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Abstract

The gluon self-energies and dispersion laws in the color superconducting phase of QCD with two massless flavors are
calculated using the effective theory near the Fermi surface. These quantities are calculated at zero temperature for all the
eight gluons, those of the remaining SU(2) color group and those corresponding to the broken generators. The construction
of the effective interaction is completed with the one loop calculation of the three- and four-point gluon interactions.
 2002 Published by Elsevier Science B.V.

1. Introduction

Color superconductivity in QCD at large densities
is a rather ancient idea [1] that has recently received
a new attention in a series of papers [2,3] (for recent
review, see [4]). Both three-flavor (Color Flavor Lock-
ing model = CFL) and two-flavor cases (2SC model)
have been studied. In this Letter we consider the 2SC
model, i.e., two massless quarks in the color super-
conducting phase, whose main features are as fol-
lows. At zero density the theory is invariant under the
group SU(3)C×SU(2)L×SU(2)R , but at high density
Cooper pairing of two quarks is energetically favored
[2]. The condensation from single-gluon exchange be-
tween two quarks takes place in the color antitriplet
channel. The condensate breaks SU(3)C down to an

E-mail address: raoul.gatto@physics.unige.ch (R. Gatto).

SU(2)C subgroup and therefore the quarks with non-
trivial SU(2)C charges acquire a gap∆; moreover, five
gluons acquire mass by the Higgs mechanism. The
chiral symmetry remains unbroken, which implies that
there are no Goldstone bosons. We will use here an ef-
fective theory near the Fermi surface [5], which has
been recently applied to the CFL phase [6] and to the
crystalline phase [7] (for a discussion of the supercon-
ductive crystalline phase, see [8]). The main results of
this approach are summarized in Section 2. In Sec-
tion 3 we compute the gluon self-energies; we con-
firm the results obtained by other authors [9,10] for
the masses of the five gluons associated to the bro-
ken generators and for the dispersion laws of the un-
broken gluons; moreover, we extend these results to
the dispersion laws of all the gluons. In Section 4 we
present the one-loop corrections to the three and four
gluon vertices in the 2SC phase for all the eight glu-
ons, which allows for a complete effective description
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of the gluon degrees of freedom of this phase at zero
temperature.

2. Effective theory

To start with let us recall some results valid for the
2SC model. In Ref. [5,6] an effective two dimensional
field theory for the CFL phase of QCD in terms of
velocity dependent fields was developed; in particular,
in [6] it was applied to the computation of the gluon
dispersion laws. In [7] this theory was extended to the
2SC model (in the crystalline phase). The main ideas
are as follows. To describe excitations near the Fermi
surface one writes the momentum p of the quarks as

(1)pν = µvν + lν ,
where µ is the quarks chemical potential and vν =
(0, �vF ), with �vF Fermi velocity (|�vF | = 1). Only
positive energy statesψ+ contribute to the Lagrangian,
whereas negative energy states decouple and can be
expressed in terms of the positive energy states. If we
define

(2)γ
µ
⊥ = 1

2
γν

(
2gµν − V µṼ ν − Ṽ µV ν),

(3)V µ = (1, �vF ), Ṽ µ = (1,−�vF ),
we can write the negative energy states as

(4)ψ− = − 1
2µ
γ0/∂T ψ+,

showing the decoupling of ψ− in the µ→ ∞ limit.
Expressing ψ− in terms of ψ+ results in an effective
theory which at the next to leading order in the inverse
of µ is described by the Lagrangian

(5)L =
∑
�vF

[
ψ

†
+iV ·Dψ+ − 1

2µ
ψ

†
+(/D⊥)2ψ+

]
,

where Dµ is the covariant derivative with respect to
the color group. At this stage it is useful to use a
different basis for the fermion fields. We introduce the
six fields ϕA+ (A= 0, . . . ,5) by the formulae

ψ+,iα =
3∑
A=0

(σA)iα√
2
ϕA+ (i, α = 1,2),

(6)ψ+,13 = ϕ4+, ψ+,23 = ϕ5+,

where σA are the Pauli matrices for A = 1,2,3 and
σ0 = 1. The Greek indices α,β are color indices and
the Latin indices i, j are for the two flavors 1,2. Here
clearly ϕA+ are positive energy, velocity-dependent
fields:

(7)ϕA+ ≡ ϕA+,�v.
We also introduce the positive energy fields with
opposite velocity:

(8)ϕA− ≡ ϕA+,−�v.

By defining

(9)χA =
(
ϕA+
CϕA∗−

)
,

the Lagrangian can be written as follows (Faµν are the
eight gluon fields):

L= 1
2

∑
�vF

5∑
A=0

χ
†
A

×
 iV ·D − 1

2µ
/D2⊥ ∆A

∆A iṼ ·D∗ − 1
2µ
/D2⊥


(10)− 1

4
Fµνa F

a
µν,

which describes, at the lowest order, the effective
theory. This Lagrangian allows for the evaluation
of the two diagrams in Fig. 1 which give the one-

(a)

(b)

Fig. 1. Gluon self energy diagrams; in both (a) and (b) dotted lines
represent gluon fields and full lines are the fermion propagators;
(b) is the tadpole diagram.
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loop contributions to the polarization tensor Πµνab (p)
(a, b are color SU(3) indices, a, b = 1, . . . ,8). As
discussed in [6] the integration over the loop variable
" is 2-dimensional ("0, "‖), while the integration over
directions perpendicular to the Fermi velocity gives a
factor of µ2/π . The diagrams in Fig. 1 are the only
diagrams not suppressed in theµ→ ∞ limit. We write

(11)Π
µν
ab (p)=Πµνab (0)+ δΠµνab (p),

with

(12)Π
µν
ab (0)=

µ2g2

2π2

∫
d �vF
4π
Σ

0,µν
ab ,

and

(13)δΠ
µν
ab (p)=

µ2g2

2π2

∫
d �vF
4π
Σ
µν
ab (p).

To start with we consider the diagram 1(a). Let us
introduce the following notations. We will denote
the indices a, b by the letters i, j for a, b = 1,2,3,
while for a, b = 4,5,6,7 we use the Greek letters
α,β . The results of our calculation are, for a, b = i, j
(= 1,2,3):

Π
µν
ij = iδij g

2µ2

4π3

∫
d �vF
4π

∫
d2"

(14)

×
(
V µV νṼ · "Ṽ · ("+ p)+ Ṽ µṼ νV · "V · ("+ p)

D1("+ p)D1(")

+∆2 V
µṼ ν + V νṼ µ

D1("+ p)D1(")

)
.

For a, b= α,β the polarization tensor is

Π
µν
αβ = iδαβ g

2µ2

8π3

∫
d �vF
4π

∫
d2"

× (
V µV νṼ · "Ṽ · ("+ p)
+ Ṽ µṼ νV · "V · ("+ p))

(15)×
(

1
D1("+ p)D2(")

+ 1
D2("+ p)D1(")

)
.

Finally, for the gluon 8 we have:

Π
µν
88 = i g

2µ2

12π3

∫
d �vF
4π

∫
d2"

(16)

×
[(
V µV νṼ · "Ṽ · ("+ p)

+ Ṽ µṼ νV · "V · ("+p))
×

(
1

D1("+ p)D1(")
+ 2
D2("+ p)D2(")

)
−∆2 V

µṼ ν + V νṼ µ
D1("+ p)D1(")

]
.

In the low momentum limit we can expand the
polarization tensor for a, b = i, j (= 1,2,3) in the
following way:

(17)

Σ
0,µν
ij = δij

(
Ṽ µṼ ν + V µV ν

2
− Ṽ

µV ν + Ṽ νV µ
2

)
,

and

(18)

Σ
µν
ij (p)= δij

(
V µV ν(Ṽ · p)2 + Ṽ µṼ ν(V · p)2

12∆2

− V
µṼ ν + Ṽ µV ν

12∆2

(
V · p Ṽ · p))

.

The validity of this approximation will be discussed
below.
It follows from Eqs. (12)–(18) that

Π00
ij (p)=Π00

ij (0)+ δΠ00
ij (p)= δΠ00

ij (p)

(19)= δij µ2g2

18π2∆2 | �p |2,

Πklij (p)=Πklij (0)+ δΠklij (p)

(20)= δij δkl µ
2g2

3π2

(
1 + p2

0
6∆2

)
,

and

(21)Π0k
ij (p)= δΠ0k

ij (p)= δij
µ2g2

18π2∆2p
0pk.

These results agree with the outcomes of [9] and [10].
For a, b= α,β (α,β = 4,5,6,7) we find:

(22)Σ
0,µν
αβ = δαβ

(
V µV ν + Ṽ µṼ ν

2

)
and

(23)

Σ
µν
αβ (p)= δαβ

(
V µV ν

(Ṽ · p)2
4∆2 + Ṽ µṼ ν (V · p)2

4∆2

)
.
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After integrating over the Fermi velocities we obtain

Π00
αβ(p)=Π00

αβ(0)+ δΠ00
αβ(p)

(24)= δαβ µ
2g2

2π2

(
1 + p

2
0 + | �p |2/3

2∆2

)
,

(25)Π0i
αβ(p)= δΠ0i

αβ (p)= δαβ
µ2g2

6π2∆2p
0pi,

and

Π
ij
αβ(p)=Πijαβ(0)+ δΠijαβ(p)

(26)

= δαβ µ
2g2

6π2

(
δij + δ

ij p2
0

2∆2 + δ
ij �p 2 + 2pipj

10∆2

)
.

For a, b= 8 we get

(27)

Σ
0,µν
88 =

(
5
3
V µV ν + Ṽ µṼ ν

2
+ V

µṼ ν + Ṽ µV ν
6

)
,

(28)

Σ
µν
88 (p)=

1
2

(
V µV ν(Ṽ · p)2 + Ṽ µṼ ν(V · p)2

9∆2

+ V
µṼ ν + Ṽ µV ν

9∆2 (V · p Ṽ · p)
)
,

therefore, we obtain

Π00
88 (p)=Π00

88 (0)+ δΠ00
88 (p)

(29)= µ
2g2

π2

(
1 + p2

0
18∆2

)
,

and

(30)Π0i
88(p)= δΠ0i

88(p)=
µ2g2

54π2∆2p
0pi,

Π
ij

88(p)=Πij88(0)+ δΠij88(p)

(31)= µ2g2

18π2

(
4δij + δ

ij �p 2 + 2pipj

15∆2

)
.

These results complete the analysis of Fig. 1(a). Now
we consider the diagram in Fig. 1(b). We note that this
diagram is independent of the external momentum p,
therefore it can only contribute to the gluon masses.
We also note that the diagrams of Fig. 1 present in-
frared divergences (in "0). To control these diver-
gences one considers the system in a heat bath and

Table 1
Debye and Meissner masses for the gluons in the 2SC phase

a Π00(0) −Πij (0)
1–3 0 0

4–7 3
2m

2
g

1
2m

2
g

8 3m2
g

1
3m

2
g

substitutes the energy euclidean integration "4 = −i"0
with a sum over the Matsubara frequencies "4 → ωn =
2π(n + 1

2 )β ; eventually one performs the limit T =
1
β

→ 0. In this way one finds for the contribution of the
diagram 1(b) to Πµνab (0) the result (a, b= 1, . . . ,8):

(32)Π
µν
ab (0)=

µ2g2

4π2 δab

∫
d �vF
4π

γ
µ
T γ

ν
T .

Therefore,

(33)Π00
ab(0)= 0,

showing that there is no contribution from this diagram
to the Debye screening, while one gets

(34)Π
ij

ab(0)= −δij δab µ
2g2

3π2 .

In Table 1 we summarize the results for the Debye and
Meissner masses obtained by the calculations of the
two diagrams in Fig. 1, where a is the gluon color and
m2
g = µ2g2

3π2 is the squared gluon mass. Our results are
in agreement with a calculation performed by [9] with
a different method.

3. Dispersion law for the gluons

In this section we will compute the dispersion laws
for the gluons. We begin our discussion by considering
the unbroken colors a, b= i, j (= 1,2,3).

3.1. Gluons 1, 2, 3

In this case we reobtain, by the present method, the
results already found in [10] by a different approach,
i.e.,

(35)L= −1
4
F
µν
i F

i
µν + 1

2
Π
µν
ij A

i
µA

j
ν,
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with Πµνij discussed above. Introducing the fields
Eai ≡ Fa0i and Bai ≡ iεijkF ajk , and using (19), (20) and
(21) these results can be written as follows

(36)L = 1
2
(
Eai E

a
i −Bai Bai

) + k
2
Eai E

a
i ,

with

(37)k = g2µ2

18π2∆2 .

As discussed in [10] this means that the medium has a
very high dielectric constant ε = k+ 1 and a magnetic
permeability λ= 1. The gluon speed in this medium is
now

(38)v = 1√
ελ

∝ ∆

gµ

and in the high density limit it tends to zero. As shown
in [10] the one loop Lagrangian (36) assumes the
gauge invariant expression

(39)L = −1
4
F
µν
j F

j
µν (j = 1,2,3),

provided the following rescaling is used

(40)A
j

0 →A
j ′
0 = k3/4A

j

0,

(41)A
j
i →A

j ′
i = k1/4A

j
i ,

(42)x0 → x ′
0 = k−1/2x0,

(43)g→ g′ = k−1/4g.

3.2. Gluons 4–8

Let us now consider the equations of motion in mo-
mentum space for the gluon field Abµ, b = 4,5,6,7,8:

(44)
[
δab

(−gµνp2 + pµpν) +Πµνab
]
Abν = 0.

We define the invariant quantities Π0,Π1,Π2 and Π3
by means of the following equations,

(45)Πµν(p0, �p )=


Π00 =Π0(p0, �p ),
Π0i =Πi0 =Π1(p0, �p )ni,
Πij =Π2(p0, �p )δij

+Π3(p0, �p )ninj ,
where we have suppressed the color indices, and �n =
�p/p .

For the broken degrees of freedom it is useful to
consider the scalar gluon field Aa0 and the longitudinal

and transverse gluon fields defined by

(46)Aai L = (�n · �Aa)ni, Aai T =Aai −Aai L.
By the equation

(47)pνΠ
νµ
ab A

b
µ = 0,

one obtains the relationship

(48)

(
p0Π0 − | �p |Π1

)
A0 = �n · �A(

p0Π1 − | �p |(Π2 +Π3)
)
,

between the scalar and the longitudinal component of
the gluon fields. The dispersion laws for the scalar,
longitudinal and transverse gluons are respectively(
Π2 +Π3 + p2

0
)(| �p |2 +Π0

) = p0| �p |(2Π1 + p0| �p |),(
Π2 +Π3 + p2

0
)(| �p |p0 +Π0

)
= p0| �p |(2Π1 + p2

0
) +Π2

1 ,

(49)p2
0 − | �p |2 +Π2 = 0.

Expanding (48) at first order in p we find for b = β =
4,5,6,7

(50)p0A
β

0 = 1
3

�p · �Aβ,
while for b = 8

(51)p0A8
0 = 1

9
�p · �A8.

In any case we define two masses, the rest mass:

(52)mR = ∣∣p0
(| �p | = 0

)∣∣,
and the effective mass m∗, by the formula:

(53)�p=m∗ ∂E
∂ �p ,

in the low momentum limit. Using Eqs. (24)–(26) we
observe that the effect of the kinetic terms in (44) is
negligible at the order g2µ2/∆2 for β = 4,5,6,7 in
the high density limit. The dispersion law for the time-
like component is:

(54)
(
m2
D + m2

D

2∆2

(
p2

0 + 1
3
| �p |2

)
− m

2
D

∆2 p
2
0

)
A
β

0 = 0,

where, from Table 1, we get m2
D = Π00(0) = µ2g2

2π2 ;
therefore,

(55)p0 = ±E0, E0 = 1√
3

√
| �p |2 + 6∆2.
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The rest mass for these gluons, in the gradient expan-
sion approximation, is given by

(56)mRA0
= √

2∆.

This result shows that the rest mass is of of the order of
∆ and one could therefore wonder if the result (56) is
significant, since it is obtained in the limit |p/∆| � 1.
To estimate the validity of this approximation we use
the exact result, which can be obtained by Eq. (49).
SinceΠ3(p0,0)= 0, the rest mass of the three species
A0,AL,AT is given by

(57)m2 +Π2
(
m2,0

) = 0.

To obtainΠ2(m
2,0) we integrate Eq. (15), with | �p | =

0, and we get

Π2
(
m2,0

) = µ
2g2

3π2

[
−1 +

+∞∫
0

dx

(58)

× x + √
x2 + 1

(x + √
x2 + 1 )2 − (m/∆)2

(
1 − x√

x2 + 1

)]
.

The numerical result of (57) is

(59)m≡mR = 0.894∆.

A comparison with (56) shows that the difference is
of the order of 40–50% and this is also the estimated
difference for the dispersion law at small �p. We
notice that also in the three flavour case the gradient
expansion approximation tends to overestimate the
correct result [11]. For the effective mass, we get in
the gradient expansion approximation

(60)m∗
A0

= √
18∆.

For the longitudinal and transverse cases we get
respectively

(61)E2
L + 7

15
| �p |2 = 2∆2,

(62)E2
T + 1

5
| �p |2 = 2∆2,

therefore, the rest masses are given by

(63)mRAL =mRAT =mRA0
= √

2∆.

The equality of the three rest masses is an exact result,
as we have stressed already. On the other hand the

effective longitudinal and transverse masses are both
negative and their values are:

(64)m∗
AL

= −15
√

2
7
∆,

(65)m∗
AT

= −5
√

2∆.

We interpret this result as follows: the spectrum of the
quasi-particles associated to these gluon modes has a
maximum for | �p | = 0, which means that at very small
temperatures, which is the limit in which we work,
these quasi-particles are unlikely to be produced.

For the time-like component of the gluon 8 we have
the dispersion law

(66)E0 =
√

9∆2 + 9| �p |2 ∆
2

m2
D

,

where, in this case m2
D =Π00(0) = µ2g2/π2; there-

fore,

(67)mRA0
= 3∆,

(68)m∗
A0

= m
2
D

3∆
.

For the longitudinal and transverse modes we have,
respectively,

(69)EL =
√

4
270

m2
M

∆2 | �p |2 +m2
M,

(70)ET =
√

− 1
30
m2
M

∆2 | �p |2 +m2
M,

where the Meissner mass is obtained from Table 1:
m2
M = µ2g2

9π2 . From these equations we see that

(71)mRAL =mRAT =mM,
whereas the effective masses are as follows

(72)m∗
AL

= 270
4
∆2

mM
,

(73)m∗
AT

= −30
∆2

mM
.

We note the peculiar feature of the spatial modes of the
8th gluon that has a very large rest mass, see Eq. (71).
This is an exact result that is not obtained by the
gradient expansion approximation. In fact integrating
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Eq. (16), with | �p | = 0, we get

(74)Π2
(
m2,0

) = −µ
2g2

9π2 = −m2
M,

and, therefore, from Eq. (57) one gets the result (71).
The longitudinal and transverse gluons with color

8 get nonetheless a vanishingly small effective mass,
see Eqs. (72) and (73), due to the very large coefficient
of | �p |2 in (69) and (70). These results should be
contrasted with those obtained for the gluons 4,5,6,7,
and for the temporal mode of the gluon 8 (in all these
cases the rest mass is of order ∆). Since our effective
description is limited to energies < ∆ these results
mean that the longitudinal and transverse modes of the
8th gluon are decoupled from the low-energy physics.

4. Three and four point gluon vertices

To complete the effective Lagrangian for the eight
gluons we compute the one loop corrections to the
gluon vertices Γ3 (3 gluons) and Γ4 (4 gluons). We
shall not consider in the sequel a possible light glueball
which is discussed in [12]. Therefore we write the full
gluon Lagrangian as

(75)L = −1
4
FaµνF

µν
a + 1

2
Π
µν
ab A

a
µA

b
ν +L1

(3) +L1
(4),

where L1
(3) and L1

(4) are the one loop Lagrangian
terms for the three and four point gluon vertices,
respectively. For the three point gluon vertex we have
two different diagrams with a quark loop. The first
one is depicted in Fig. 2; the second one arises from
the 1/µ term in Eq. (5) and is suppressed together
with diagrams not containing quark loops. For the four
point gluon vertex we have three different diagrams
with a quark loop, but only the one depicted in Fig. 3
survives in the µ→ ∞ limit.

To start with, let us consider the three-point func-
tion. At the tree level (L = L0) the contribution to the
Lagrangian can be written in the form:

(76)L0
(3) = −gfabcAµa Aνb∂µAc,ν .

At one loop (L = L1) we have to distinguish between
the contribution of the diagram involving the gluons
in the unbroken SU(2) gauge group, which we call
L1
(3),1, and those involving gluons corresponding to

Fig. 2. Three gluon vertex. Dotted lines represent gluon fields; full
lines are fermion propagators.

Fig. 3. Four gluon vertex. Dotted lines represent gluon fields; full
lines are fermion propagators.

broken generators, which we call L1
(3),2. So the one-

loop correction at the three gluon vertex may be
written as follows:

(77)L1
(3) = L1

(3),1 +L1
(3),2.

For the SU(2) contribution our results are as follows

(78)L1
(3),1 = −gkfabcAµa Aνb∂µAνc [δµ0δνi + δµiδν0],

with a, b, c = i, j, l ∈ {1,2,3} and k = g2µ2

18π2∆2 . This
term can be obtained in a simpler manner, by requiring
gauge invariance for the SU(2) gluons. On the other
hand for a, b, c= i, α,β (i = 1,2,3; α,β = 4, . . . ,7)
or a, b, c= 8, α,β we have

(79)
L1
(3),2 = −g 3k

2
(
I 1
µνρσC

abc
1 + I 1

σµνρC
abc
2

)
Aµa A

ν
b∂
σAρc ,

where

(80)I 1
µνρσ =

∫
d �vF
4π
ṼµVνVρVσ
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Table 2
I 1
µνρσ non-vanishing elements; i, j = 1,2,3

µνρσ 0000 00ii 0i0i 0ii0 ii00

I 1
µνρσ 1 1/3 1/3 1/3 −1/3

µνρσ i0i0 i00i iijj ijj i ij ij

I1
µνρσ −1/3 −1/3 1/15 1/15 1/15

Table 3
Cabc1 and Cabc2 non-vanishing elements

abc Cabc1 Cabc2

α8β 1
3fα8β

2
3fα8β

αiβ fiαβ 0

is the matrix which expresses the breaking of Lorentz
invariance. Its non-vanishing elements are listed in
Table 2.

On the other hand Cabc1 and Cabc2 are the matrices
which express the breaking of SU(3) color and whose
non-vanishing elements are given in the Table 3, where
fabc are the SU(3) structure constants. Since the
coupling of the SU(2) gluons with gluons of color α =
4,5,6,7 is completely fixed by the gauge invariance,
we have written down the corresponding term Ciαβ

only for a check. They are exactly the SU(3) structure
constants.

Let us consider the four-gluon vertex whose tree
contribution is

(81)L0
(4) = −g

2

4
fabefcdeA

µ
a A

ν
bAcµAdν.

The one-loop correction may be written as follows:

(82)L1
(4) = L1

(4),1 +L1
(4),2 +L1

(4),3 +L1
(4),4.

We have four contributions to L1
(4). The first term is

(83)

L1
(4),1 = −k g

2

4
fabefcdeA

µ
a A

ν
bA
µ
c A

ν
d [δµ0δνi + δµiδν0],

with k = g2µ2

18π2∆2 . It comes from diagrams where
all the gluons are in the SU(2) group, therefore
the indices a, b, c, d take the values i, j, l,m. The
second term comes from diagrams with gluons of
colors a, b, c, d = α,β,8,8. The contribution to the

Table 4
Dabcd non-vanishing elements

abcd Dabcd1

α88α 4
9fα8I f8αI

abcd Dabcd2

iα8β 2
3fiαI f8βI

abcd Dabcd3

iαβj fiαI fβjI

8αβi 1
3f8αI fβiI

αβγ δ fαβI fγ δI 2(1 + log 4)

Lagrangian is as follows:

(84)L1
(4),2 = −g

2

4

(
9k
2

)
Dabcd1 I 2

µνρσA
µ
a A

ν
bA
ρ
cA
σ
d .

The non-vanishing elements of the tensorDabcd1 are in
Table 4 and

(85)I 2
µνρσ =

∫
d �vF
4π
VµVνVρVσ .

The third contribution is from diagrams with gluons
of colors a, b, c, d = i, α,β,8, with the gluon 8
connected to two ungapped quarks. The contribution is

(86)L1
(4),3 = −g

2

4
(9k)Dabcd2 I 1

µνρσA
µ
a A

ν
bA
ρ
cA
σ
d ,

where I 1
µνρσ is the same tensor we defined in Eq. (80).

The relevant Dabcd2 values are in Table 4. The last
contribution to the four-gluon vertex is

(87)L1
(4),4 = −g

2

4

(
9k
2

)
Dabcd3 I 3

µνρσA
µ
a A

ν
bA
ρ
cA
σ
d ,

where

(88)I 3
µνρσ =

∫
d �vF
4π
ṼµṼνVρVσ

and the non-vanishingDabcd3 are in Table 4.
As we wrote above, some of these terms are

completely fixed by gauge invariance, once we know
the renormalization properties of the SU(2) fields.

To evaluate the effective Lagrangian terms L(3) and
L(4) one might redefine the fields Aaµ (a = 1,2,3) and
the coordinates according to Eqs. (40)–(43); also the



152 R. Casalbuoni et al. / Physics Letters B 524 (2002) 144–152

other gluon fields can be redefined to include wave
function renormalization constants. We do not make
this exercise since, for the gluons corresponding to
the broken colors, we gain little or no physical insight
from this procedure, as the corresponding Lagrangian
cannot be put in the form (39).

5. Conclusions

We have used the effective theory near the Fermi
surface to calculate the gluon self-energies and dis-
persion laws in the color superconducting phase of
QCD with two massless flavors (2SC). The results
confirm, within a different formalism, and extend, re-
sults already obtained, notably by Rischke, Son, and
Stephanov. The three gluons of the unbroken SU(2)
color have no Debye screening and Meissner ef-
fect, but they are affected in their dynamics by the
medium polarizability. The remaining gluons show
Debye screening and Meissner effect. The Debye and
Meissner masses can be read from the Table 1. For the
gluons 1,2,3 one easily finds the known result that
they have no rest mass and no effective mass and that
their velocity is that relevant to a polarizable medium
of unit magnetic permeability and a dielectric constant
depending in a known way on the theory parameters.
The gluons 4,5,6 and 7 get masses of order of the
gap, showing a behaviour quite similar by the one ex-
hibited by the gluons in the CFL phase [6]. The behav-
iour of the longitudinal gluon 8 is not quite the same
since there is no renormalization in the part of the La-
grangian involving the time derivative. As a conse-
quence the rest mass of this gluon is not of the order∆
(the gap), but rather of order gµ (the Meissner mass).
This makes these particles to behave in-medium in a
rather peculiar way. Very difficult to be produced rel-
atively to the other modes, because of their large rest
mass, but once produced they move as particles with
a vanishingly small effective mass, of order ∆2/gµ.

The gluons 4,5,6,7 have large (with respect to the gap
parameter) negative longitudinal and transverse effec-
tive masses, so that they are unlikely to be produced
at small temperatures. To complete the construction of
the effective interaction we have calculated to one loop
the three and four point gluon interactions. Gauge in-
variance can be used directly for the couplings involv-
ing gluons of the unbroken SU(2) color. For the re-
maining three and four point gluon selfcouplings one
has to evaluate explicitly the relevant loop diagrams.
The results are given in Eqs. (76)–(86).
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