2,547 research outputs found

    DEMOGRAPHIC, SPATIAL, AND EPIGENETIC RESPONSE OF THE LOUISIANA WATERTHRUSH (PARKESIA MOTACILLA) TO SHALE GAS DEVELOPMENT

    Get PDF
    My study centered on a bioindicator songbird, the Louisiana Waterthrush (Parkesia motacilla), hereafter waterthrush, an organism that co-occurs in both forested and aquatic habitat across the aquatic-terrestrial interface. This enabled the opportunity to quantify demographic, spatial, and epigenetic (i.e., DNA methylation) responses in a highly forested watershed of the Central Appalachians, the areas that have undergone the most rapid transformations over the last decade from unconventional shale gas development and activities. I organized my dissertation into 4 parts (Part 1: Introduction, Part 2: Louisiana Waterthrush Demography, Part 3: Spatial Assessment of Louisiana Waterthrush Foraging, Part 4: Louisiana Waterthrush Molecular Ecology) including 6 chapters that indicate multiple biotic and abiotic factors interacted with or were altered by shale gas development resulting in atypical, negative disturbances that drove a steep decline in a waterthrush population in West Virginia. Part 1 includes Chapter 1 and is an introduction to my dissertation. I introduce the reader to the rationale for my study, the focal species, research objectives, and the study area. I also mention some limitations to my study that can be considered in any future research endeavors. Part 2 comprises Chapters 2–3 which are a comprehensive examination of demographic parameters over a six-year period (2009–2011, 2013–2015). In Chapter 2, I examined demographic response to shale gas development for nest abandonment, nest survival, nest productivity, a source-sink threshold, riparian habitat quality, and territory density and length. Nest productivity was lower in areas disturbed by shale gas where a source–sink threshold suggested these areas were more at risk of being sink habitat. Overall results suggest a decline in waterthrush site quality as shale gas development increased. In Chapter 3, I focused on first-year return rates (site fidelity), site fidelity factors, and apparent survival. I related natal fidelity and pairing rates to territory density, and also compared # of breeding attempts between return and non-returning females with and without territory shale gas disturbance. The study identified potential conflicts between factors that influence adult survival and site fidelity that may affect long-term population persistence. Part 3 includes Chapters 4–5 and focuses on utilizing and accounting for spatial properties intrinsic to stream ecosystems to make informed decisions regarding waterthrush foraging. Chapter 4 was a follow-up to a waterthrush aquatic prey study at our site in 2011 that suggested shale gas development negatively affected waterthrush demography from alterations in their aquatic prey at a watershed scale. During 2013–2014, I quantified waterthrush demographic response and nest survival in relation to potential changes in its aquatic prey due to shale gas development. I utilized spatial generalized linear mixed models that accounted for both spatial and non-spatial sources of variability. I found waterthrush aquatic prey was negatively affected by shale gas development at the nest and territory level, and that there may be a disturbance threshold at which waterthrush can no longer adapt and respond negatively to changes in its aquatic prey. In Chapter 5, I used spatial stream network models (SSNMs) to explore relationships among the waterthrush, stream channel and monitoring data, and the aquatic prey of the waterthrush. I compared the spatial models to traditional regression models to see which ones performed best. We sampled aquatic prey in waterthrush territories and collected wetted perimeter stream channel and water chemistry data along a 50m fixed point stream grid that mapped the foraging substrate or stream channel where waterthrush forage. By relating foraging observations and data collected to the stream grid, I was able to develop a foraging probability index that determined what conditions or variables create or affect ideal foraging locations. Spatial models outperformed traditional regression models and made a statistical difference in whether stream covariates of interest were considered relatable to waterthrush foraging. My study also indicated waterthrush forage in areas of higher biotic stream integrity. Lastly, Part 4 includes Chapter 6 where I examined epigenetic modifications. These are alterations to genes without changing the gene sequence and can be thought of as an evolutionary soft inheritance of gene expression that can either be adaptive or maladaptive for the individual. DNA methylation is one type of epigenetic modification that may vary in response to environmental stressors. We examined the association between DNA methylation and demographic characteristics in addition to potential differential methylation from shale gas development. There was differential methylation for demographic characteristics as well as for adult males between shale gas undisturbed and disturbed areas. Barium (Ba) and strontium (Sr) data were collected in 2013 feather samples where adult males had fewer methylated sites at higher concentrations of Ba and Sr, while nestlings displayed no correlation of methylation to Ba and Sr concentrations. Females displayed increased methylation with increased Ba and Sr, a trend reflected in adult female recaptures. Overall, results of our study suggest sex-specific influences of shale gas development on gene expression that may affect long-term population survival and fitness

    Spatial stream modeling of Louisiana Waterthrush (\u3ci\u3eParkesia motacilla\u3c/i\u3e) foraging substrate and aquatic prey in a watershed undergoing shale gas development

    Get PDF
    We demonstrate the use of spatial stream network models (SSNMs) to explore relationships between a semiaquatic bioindicator songbird, Louisiana Waterthrush (Parkesia motacilla), and stream monitoring and benthic macroinvertebrate data in an area undergoing shale gas development. SSNMs allowed us to account for spatial autocorrelation inherent to these environmental data types and stream properties that traditional modeling approaches cannot capture to elucidate factors that affect waterthrush foraging locations. We monitored waterthrush along 58.1 km of 1st- and 2nd-order headwater stream tributaries (n = 14) in northwestern West Virginia over a two year period (2013–2014), sampled benthic macroinvertebrates in waterthrush territories, and collected wetted perimeter stream channel and water chemistry data along a 50 m fixed point stream grid. Spatial models outperformed traditional regression models and made a statistical difference in whether stream covariates of interest were considered relatable to waterthrush foraging. Waterthrush foraging probability index (FPI) was greater in areas where family and genus-level multi-metric indices of biotic stream integrity were higher (i.e. WVSCI and GLIMPSS). Waterthrush were found foraging both among stream flow connected and unconnected sampled sites on relatively further upstream locations where WVSCI and GLIMPSS were predicted to be highest. While there was no significant relationship found between FPI and shale gas land use on a catchment area scale, further information on waterthrush trophic dynamics and bioaccumulation of surface contaminants is needed before establishing the extent to which waterthrush foraging may be affected by shale gas development

    Demographic characteristics of an avian predator, Louisiana Waterthrush (Parkesia motacilla), in response to its aquatic prey in a Central Appalachian USA watershed impacted by shale gas development

    Get PDF
    We related Louisiana Waterthrush (Parkesia motacilla) demographic response and nest sur- vival to benthic macroinvertebrate aquatic prey and to shale gas development parameters using models that accounted for both spatial and non-spatial sources of variability in a Central Appala- chian USA watershed. In 2013, aquatic prey density and pollution intolerant genera (i.e., pollu- tion tolerance value \u3c4) decreased statistically with increased waterthrush territory length but not in 2014 when territory densities were lower. In general, most demographic responses to aquatic prey were variable and negatively related to aquatic prey in 2013 but positively related in 2014. Competing aquatic prey covariate models to explain nest survival were not statistically significant but differed annually and in general reversed from negative to positive influence on daily survival rate. Potential hydraulic fracturing runoff decreased nest survival both years and was statistically significant in 2014. The EPA Rapid Bioassessment protocol (EPA) and Habitat Suitability Index (HSI) designed for assessing suitability requirements for waterthrush were posi- tively linked to aquatic prey where higher scores increased aquatic prey metrics, but EPA was more strongly linked than HSI and varied annually. While potential hydraulic fracturing runoff in 2013 may have increased Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness, in 2014 shale gas territory disturbance decreased EPT richness. In 2014, intolerant genera decreased at the territory and nest level with increased shale gas disturbance suggesting the potential for localized negative effects on waterthrush. Loss of food resources does not seem directly or solely responsible for demographic declines where waterthrush likely were able to meet their foraging needs. However collective evidence suggests there may be a shale gas dis- turbance threshold at which waterthrush respond negatively to aquatic prey community changes. Density-dependent regulation of their ability to adapt to environmental change through acquisition of additional resources may also alter demographic response

    Speckle Control with a remapped-pupil PIAA-coronagraph

    Full text link
    The PIAA is a now well demonstrated high contrast technique that uses an intermediate remapping of the pupil for high contrast coronagraphy (apodization), before restoring it to recover classical imaging capabilities. This paper presents the first demonstration of complete speckle control loop with one such PIAA coronagraph. We show the presence of a complete set of remapping optics (the so-called PIAA and matching inverse PIAA) is transparent to the wavefront control algorithm. Simple focal plane based wavefront control algorithms can thus be employed, without the need to model remapping effects. Using the Subaru Coronagraphic Extreme AO (SCExAO) instrument built for the Subaru Telescope, we show that a complete PIAA-coronagraph is compatible with a simple implementation of a speckle nulling technique, and demonstrate the benefit of the PIAA for high contrast imaging at small angular separation.Comment: 6 figures, submitted to PAS

    Direct Photons at RHIC

    Full text link
    The PHENIX experiment has measured direct photons in sNN=200\sqrt{s_{NN}} = 200 GeV Au+Au collisions and p+p collisions. The fraction of photons due to direct production in Au+Au collisions is shown as a function of pTp_T and centrality. This measurement is compared with expectation from pQCD calculations. Other possible sources of direct photons are discussed.Comment: 7 pages, 5 figures, presented at Hot Quarks 2004, Taos, N

    Resonant seismic emission of subsurface objects

    Full text link

    Identifying and improving green spaces on a college campus: A photovoice study

    Get PDF
    ; Ecopsychology is available online at: http://online.liebertpub.com. Abstract: Research suggests that a large percent of college students experience stress due to the demands of college life. Campus health professionals use a wide range of interventions to reduce student stress; however, the ability of green spaces on campuses to alleviate stress is often lacking in college health programs and related research. In this study, photovoice methodology was used to conduct a community-based participatory research project in order to identify and improve campus green spaces that students frequent for stress relief. Participants included 45 undergraduate students enrolled in an emotional health course. Students were instructed to take photos that addressed two open-ended questions: (1) What green spaces on campus do you visit to alleviate stress? (2) How could the green spaces on campus be improved for alleviating stress? Afterward, students analyzed and placed their photos into distinct themes. Results showed that students enjoyed green spaces that featured both man-made structures (e.g., swings, fountains, benches) and exclusively natural areas (e.g., magnolia trees, campus parks). Students indicated that campus areas in need of improvement for alleviating stress included trash cans, areas lacking landscaping, piles of cigarette butts, and a dilapidated campus tower. Spaces that helped alleviate stress and spaces that needed improvement were both reflective of Attention Restoration Theory. At the culmination of the project, the students shared their findings with the campus community at a photo exhibit. During the exhibit, students' voices were heard by campus administrators in positions of authority (e.g., chancellor, director of Facilities Operations, grounds crew supervisor)
    • …
    corecore