18,644 research outputs found

    Revival of quantum correlations without system-environment back-action

    Get PDF
    Revivals of quantum correlations have often been explained in terms of back-action on quantum systems by their quantum environment(s). Here we consider a system of two independently evolving qubits, each locally interacting with a classical random external field. The environments of the qubits are also independent, and there is no back-action on the qubits. Nevertheless, entanglement, quantum discord and classical correlations between the two qubits may revive in this model. We explain the revivals in terms of correlations in a classical-quantum state of the environments and the qubits. Although classical states cannot store entanglement on their own, they can play a role in storing and reviving entanglement. It is important to know how the absence of back-action, or modelling an environment as classical, affects the kind of system time evolutions one is able to describe. We find a class of global time evolutions where back-action is absent and for which there is no loss of generality in modelling the environment as classical. Finally, we show that the revivals can be connected with the increase of a parameter used to quantify non-Markovianity of the single-qubit dynamics.Comment: 8 pages, 4 figures; this version to appear in Phys. Rev.

    D-brane Instantons as Gauge Instantons in Orientifolds of Chiral Quiver Theories

    Full text link
    Systems of D3-branes at orientifold singularities can receive non-perturbative D-brane instanton corrections, inducing field theory operators in the 4d effective theory. In certain non-chiral examples, these systems have been realized as the infrared endpoint of a Seiberg duality cascade, in which the D-brane instanton effects arise from strong gauge theory dynamics. We present the first UV duality cascade completion of chiral D3-brane theories, in which the D-brane instantons arise from gauge theory dynamics. Chiral examples are interesting because the instanton fermion zero mode sector is topologically protected, and therefore lead to more robust setups. As an application of our results, we provide a UV completion of certain D-brane orientifold systems recently claimed to produce conformal field theories with conformal invariance broken only by D-brane instantons.Comment: 50 pages, 32 figures. v2: version published in JHEP with references adde

    On Dimer Models and Closed String Theories

    Full text link
    We study some aspects of the recently discovered connection between dimer models and D-brane gauge theories. We argue that dimer models are also naturally related to closed string theories on non compact orbifolds of \BC^2 and \BC^3, via their twisted sector R charges, and show that perfect matchings in dimer models correspond to twisted sector states in the closed string theory. We also use this formalism to study the combinatorics of some unstable orbifolds of \BC^2.Comment: 1 + 25 pages, LaTeX, 11 epsf figure

    Dynamics of Entanglement and Bell-nonlocality for Two Stochastic Qubits with Dipole-Dipole Interaction

    Full text link
    We have studied the analytical dynamics of Bell nonlocality as measured by CHSH inequality and entanglement as measured by concurrence for two noisy qubits that have dipole-dipole interaction. The nonlocal entanglement created by the dipole-dipole interaction is found to be protected from sudden death for certain initial states

    Entanglement Dynamics of Two Independent Cavity-Embedded Quantum Dots

    Get PDF
    We investigate the dynamical behavior of entanglement in a system made by two solid-state emitters, as two quantum dots, embedded in two separated micro-cavities. In these solid-state systems, in addition to the coupling with the cavity mode, the emitter is coupled to a continuum of leaky modes providing additional losses and it is also subject to a phonon-induced pure dephasing mechanism. We model this physical configuration as a multipartite system composed by two independent parts each containing a qubit embedded in a single-mode cavity, exposed to cavity losses, spontaneous emission and pure dephasing. We study the time evolution of entanglement of this multipartite open system finally applying this theoretical framework to the case of currently available solid-state quantum dots in micro-cavities.Comment: 10 pages, 4 figures, to appear in Topical Issue of Physica Scripta on proceedings of CEWQO 201

    Mimicking the probability distribution of a two-dimensional Grover walk with a single-qubit coin

    Get PDF
    Multi-dimensional quantum walks usually require large coin spaces. Here we show that the non-localized case of the spatial density probability of the two-dimensional Grover walk can be obtained using only a two-dimensional coin space and a quantum walk in alternate directions. We present a formal proof of this correspondence and analyze the behavior of the coin-position entanglement as well as the x-y spatial entanglement in our scheme with respect to the Grover one. We show that our experimentally simpler scheme allows to entangle the two orthogonal directions of the walk more efficiently.Comment: 5 pages, 2 figures, RevTeX

    Quivers, Tilings, Branes and Rhombi

    Full text link
    We describe a simple algorithm that computes the recently discovered brane tilings for a given generic toric singular Calabi-Yau threefold. This therefore gives AdS/CFT dual quiver gauge theories for D3-branes probing the given non-compact manifold. The algorithm solves a longstanding problem by computing superpotentials for these theories directly from the toric diagram of the singularity. We study the parameter space of a-maximization; this study is made possible by identifying the R-charges of bifundamental fields as angles in the brane tiling. We also study Seiberg duality from a new perspective.Comment: 36 pages, 40 figures, JHEP

    Tripartite entanglement dynamics in a system of strongly driven qubits

    Full text link
    We study the dynamics of tripartite entanglement in a system of two strongly driven qubits individually coupled to a dissipative cavity. We aim at explanation of the previously noted entanglement revival between two qubits in this system. We show that the periods of entanglement loss correspond to the strong tripartite entanglement between the qubits and the cavity and the recovery has to do with an inverse process. We demonstrate that the overall process of qubit-qubit entanglement loss is due to the second order coupling to the external continuum which explains the exp[-g^2 t/2+g^2 k t^3/6+\cdot] for of the entanglement loss reported previously.Comment: 9 pages, 5 figure

    Maximal Commutative Subalgebras Invariant for CP-Maps: (Counter-)Examples

    Full text link
    We solve, mainly by counterexamples, many natural questions regarding maximal commutative subalgebras invariant under CP-maps or semigroups of CP-maps on a von Neumann algebra. In particular, we discuss the structure of the generators of norm continuous semigroups on B(G) leaving a maximal commutative subalgebra invariant and show that there exists Markov CP-semigroups on M_d without invariant maximal commutative subalgebras for any d>2.Comment: After the elemenitation in Version 2 of a false class of examples in Version 1, we now provide also correct examples for unital CP-maps and Markov semigroups on M_d for d>2 without invariant masa

    Entanglement dynamics of two independent qubits in environments with and without memory

    Full text link
    A procedure to obtain the dynamics of NN independent qudits (dd-level systems) each interacting with its own reservoir, for any arbitrary initial state, is presented. This is then applied to study the dynamics of the entanglement of two qubits, initially in an extended Werner-like mixed state with each of them in a zero temperature non-Markovian environment. The dependence of the entanglement dynamics on the purity and degree of entanglement of the initial states and on the amount of non-Markovianity is also given. This extends the previous work about non-Markovian effects on the two-qubit entanglement dynamics for initial Bell-like states [B. Bellomo \textit{et al.}, Phys. Rev. Lett. \textbf{99}, 160502 (2007)]. The effect of temperature on the two-qubit entanglement dynamics in a Markovian environment is finally obtained.Comment: 10 pages, 6 figure
    • 

    corecore