415 research outputs found

    Fucking failures: The future of fat sex

    Get PDF
    In the context of the obesity ‘epidemic’ fat people’s sex lives are cast as sterile, sexually dysfunctional or just plain non-existent. This article analyzes medical discourses of obesity and sex in order to argue that fat sex is constructed as a type of failure. Using insights from antisocial queer theory, fat sex is further shown to be queer in its failure to adhere to the specifically heteronormative dictates of what Edelman (2004) calls ‘reproductive futurism’. The analysis finally engages with Halberstam’s (2011) notion of queer failure to demonstrate how deconstructing notions of success and failure might offer fat political projects new ways to imagine the future of fat sex

    Incident venous thromboembolic events in the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER)

    Get PDF
    <p>Background: Venous thromboembolic events (VTE), including deep venous thrombosis and pulmonary embolism, are common in older age. It has been suggested that statins might reduce the risk of VTE however positive results from studies of middle aged subjects may not be generalisable to elderly people. We aimed to determine the effect of pravastatin on incident VTE in older people; we also studied the impact of clinical and plasma risk variables.</p> <p>Methods: This study was an analysis of incident VTE using data from the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER), a randomized, double-blind, placebo-controlled trial of pravastatin in men and women aged 70-82. Mean follow-up was 3.2 years. Risk for VTE was examined in non-warfarin treated pravastatin (n = 2834) and placebo (n = 2865) patients using a Cox's proportional hazard model, and the impact of other risk factors assessed in a multivariate forward stepwise regression analysis. Baseline clinical characteristics, blood biochemistry and hematology variables, plasma levels of lipids and lipoproteins, and plasma markers of inflammation and adiposity were compared. Plasma markers of thrombosis and hemostasis were assessed in a nested case (n = 48) control (n = 93) study where the cohort was those participants, not on warfarin, for whom data were available.</p> <p>Results: There were 28 definite cases (1.0%) of incident VTE in the pravastatin group recipients and 20 cases (0.70%) in placebo recipients. Pravastatin did not reduce VTE in PROSPER compared to placebo [unadjusted hazard ratio (95% confidence interval) 1.42 (0.80, 2.52) p = 0.23]. Higher body mass index (BMI) [1.09 (1.02, 1.15) p = 0.0075], country [Scotland vs Netherlands 4.26 (1.00, 18.21) p = 0.050 and Ireland vs Netherlands 6.16 (1.46, 26.00) p = 0.013], lower systolic blood pressure [1.35 (1.03, 1.75) p = 0.027] and lower baseline Mini Mental State Examination (MMSE) score [1.19 (1.01, 1.41) p = 0.034] were associated with an increased risk of VTE, however only BMI, country and systolic blood pressure remained significant on multivariate analysis. In a nested case control study of definite VTE, plasma Factor VIII levels were associated with VTE [1.52 (1.01, 2.28), p = 0.044]. However no other measure of thrombosis and haemostasis was associated with increased risk of VTE.</p> <p>Conclusions: Pravastatin does not prevent VTE in elderly people at risk of vascular disease. Blood markers of haemostasis and inflammation are not strongly predictive of VTE in older age however BMI, country and lower systolic blood pressure are independently associated with VTE risk.</p&gt

    NIH Disease Funding Levels and Burden of Disease

    Get PDF
    BACKGROUND: An analysis of NIH funding in 1996 found that the strongest predictor of funding, disability-adjusted life-years (DALYs), explained only 39% of the variance in funding. In 1998, Congress requested that the Institute of Medicine (IOM) evaluate priority-setting criteria for NIH funding; the IOM recommended greater consideration of disease burden. We examined whether the association between current burden and funding has changed since that time. METHODS: We analyzed public data on 2006 NIH funding for 29 common conditions. Measures of US disease burden in 2004 were obtained from the World Health Organization's Global Burden of Disease study and national databases. We assessed the relationship between disease burden and NIH funding dollars in univariate and multivariable log-linear models that evaluated all measures of disease burden. Sensitivity analyses examined associations with future US burden, current and future measures of world disease burden, and a newly standardized NIH accounting method. RESULTS: In univariate and multivariable analyses, disease-specific NIH funding levels increased with burden of disease measured in DALYs (p = 0.001), which accounted for 33% of funding level variation. No other factor predicted funding in multivariable models. Conditions receiving the most funding greater than expected based on disease burden were AIDS (2474M),diabetesmellitus(2474 M), diabetes mellitus (390 M), and perinatal conditions (297M).Depression(297 M). Depression (719 M), injuries (691M),andchronicobstructivepulmonarydisease(691 M), and chronic obstructive pulmonary disease (613 M) were the most underfunded. Results were similar using estimates of future US burden, current and future world disease burden, and alternate NIH accounting methods. CONCLUSIONS: Current levels of NIH disease-specific research funding correlate modestly with US disease burden, and correlation has not improved in the last decade

    Pneumonic Tularemia in Rabbits Resembles the Human Disease as Illustrated by Radiographic and Hematological Changes after Infection

    Get PDF
    Background: Pneumonic tularemia is caused by inhalation of the gram negative bacterium, Francisella tularensis. Because of concerns that tularemia could be used as a bioterrorism agent, vaccines and therapeutics are urgently needed. Animal models of pneumonic tularemia with a pathophysiology similar to the human disease are needed to evaluate the efficacy of these potential medical countermeasures. Principal Findings: Rabbits exposed to aerosols containing Francisella tularensis strain SCHU S4 developed a rapidly progressive fatal pneumonic disease. Clinical signs became evident on the third day after exposure with development of a fever (>40.5°C) and a sharp decline in both food and water intake. Blood samples collected on day 4 found lymphopenia and a decrease in platelet counts coupled with elevations in erythrocyte sedimentation rate, alanine aminotransferase, cholesterol, granulocytes and monocytes. Radiographs demonstrated the development of pneumonia and abnormalities of intestinal gas consistent with ileus. On average, rabbits were moribund 5.1 days after exposure; no rabbits survived exposure at any dose (190-54,000 cfu). Gross evaluation of tissues taken at necropsy showed evidence of pathology in the lungs, spleen, liver, kidney and intestines. Bacterial counts confirmed bacterial dissemination from the lungs to the liver and spleen. Conclusions/Significance: The pathophysiology of pneumonic tularemia in rabbits resembles what has been reported for humans. Rabbits therefore are a relevant model of the human disease caused by type A strains of F. tularensis. © 2011 Reed et al

    Climate change, precipitation and impacts on an estuarine refuge from disease

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e18849, doi:10.1371/journal.pone.0018849.Oysters play important roles in estuarine ecosystems but have suffered recently due to overfishing, pollution, and habitat loss. A tradeoff between growth rate and disease prevalence as a function of salinity makes the estuarine salinity transition of special concern for oyster survival and restoration. Estuarine salinity varies with discharge, so increases or decreases in precipitation with climate change may shift regions of low salinity and disease refuge away from optimal oyster bottom habitat, negatively impacting reproduction and survival. Temperature is an additional factor for oyster survival, and recent temperature increases have increased vulnerability to disease in higher salinity regions. We examined growth, reproduction, and survival of oysters in the New York Harbor-Hudson River region, focusing on a low-salinity refuge in the estuary. Observations were during two years when rainfall was above average and comparable to projected future increases in precipitation in the region and a past period of about 15 years with high precipitation. We found a clear tradeoff between oyster growth and vulnerability to disease. Oysters survived well when exposed to intermediate salinities during two summers (2008, 2010) with moderate discharge conditions. However, increased precipitation and discharge in 2009 reduced salinities in the region with suitable benthic habitat, greatly increasing oyster mortality. To evaluate the estuarine conditions over longer periods, we applied a numerical model of the Hudson to simulate salinities over the past century. Model results suggest that much of the region with suitable benthic habitat that historically had been a low salinity refuge region may be vulnerable to higher mortality under projected increases in precipitation and discharge. Predicted increases in precipitation in the northeastern United States due to climate change may lower salinities past important thresholds for oyster survival in estuarine regions with appropriate substrate, potentially disrupting metapopulation dynamics and impeding oyster restoration efforts, especially in the Hudson estuary where a large basin constitutes an excellent refuge from disease.Funding was provided by the Hudson River Foundation, grant number 00607A, and the New York State Department of Environmental Conservation (MOU 2008)

    Who leads research productivity growth? Guidelines for R&D policy-makers

    Full text link
    [EN] This paper evaluates to what extent policy-makers have been able to promote the creation and consolidation of comprehensive research groups that contribute to the implementation of a successful innovation system. Malmquist productivity indices are applied in the case of the Spanish Food Technology Program, finding that a large size and a comprehensive multi-dimensional research output are the key features of the leading groups exhibiting high efficiency and productivity levels. While identifying these groups as benchmarks, we conclude that the financial grants allocated by the program, typically aimed at small-sized and partially oriented research groups, have not succeeded in reorienting them in time so as to overcome their limitations. We suggest that this methodology offers relevant conclusions to policy evaluation methods, helping policy-makers to readapt and reorient policies and their associated means, most notably resource allocation (financial schemes), to better respond to the actual needs of research groups in their search for excellence (micro-level perspective), and to adapt future policy design to the achievement of medium-long term policy objectives (meso and macro-level).Jiménez Saez, F.; Zabala Iturriagagoitia, JM.; Zofio, JL. (2013). Who leads research productivity growth? Guidelines for R&D policy-makers. Scientometrics. 94(1):273-303. doi:10.1007/s11192-012-0763-0S273303941Abbring, J. H., & Heckman, J. J. (2008). Dynamic policy analysis. In L. Mátyás & P. Sevestre (Eds.), The econometrics of panel data (3rd ed., pp. 795–863). Heidelberg: Springer.Acosta Ballesteros, J., & Modrego Rico, A. (2001). Public financing of cooperative R&D projects in Spain: the concerted projects under the national R&D plan. Research Policy, 30, 625–641.Arbel, A. (1981). Policy evaluation in the dynamic input–output model. International Journal of Systems Science, 12, 255–260.Arnold, E. (2004). Evaluation research and innovation policy: A systems world needs systems evaluations. Research Evaluation, 13, 3–17.Arrow, J. K. (1962). Economic welfare and the allocation of resources for inventions. In R. Nelson (Ed.), The rate and direction of inventive activity: Economic and social factor (pp. 609–625). Princeton: Princeton University Press and NBER.Autio, E. (1997). New, technology-based firms in innovation networks symplectic and generative impacts. Research Policy, 26, 263–281.Balk, B. (2001). Scale efficiency and productivity change. Journal of Productivity Analysis, 15, 153–183.Balzat, M., & Hanusch, H. (2004). Recent trends in the research on national innovation systems. Journal of Evolutionary Economics, 14, 197–210.Berg, S. A., Førsund, F. R., & Jansen, E. S. (1992). Malmquist indices of productivity growth during the deregulation of Norwegian banking. Scandinavian Journal of Economics, 94, S211–S228.Bergek, A., Carlsson, B., Lindmark, S., Rickne, A., & Jacobsson, S. (2008). Analyzing the functional dynamics of technological innovation systems: A scheme of analysis. Research Policy, 37, 407–429.Bonaccorsi, A., & Daraio, C. (2005). Exploring size and agglomeration effects on public research productivity. Scientometrics, 63(1), 87–120.Buisseret, T. J., Cameron, H., & Georghiou, L. (1995). What difference does it make? Additionality in the public support of R&D in large firms. International Journal of Technology Management, 10, 587–600.Bustelo, M. (2006). The potential role of standards and guidelines in the development of an evaluation culture in Spain. Evaluation, 12, 437–453.Chavas, J. P., & Cox, T. M. (1999). A generalized distance function and the analysis of production efficiency. Southern Economic Journal, 66, 295–318.CICYT. (1987). Programa Nacional de Tecnología de los Alimentos. Madrid: Ministerio de Educación y Ciencia.CICYT (1988). Plan Nacional de Investigación Científica y Desarrollo Tecnológico 1988–1991. Ministerio de Educación y Ciencia, Secretaría de Estado de Universidades e Investigación, Madrid.Cooper, W. W., Seiford, L. M., & Tone, K. (2000). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-software. Boston: Kluwer Academic Publishers.David, P., Mowery, D., & Steinmueller, W. E. (1994). Analyzing the economic payoffs from basic research. In D. Mowery (Ed.), Science and technology policy in interdependent economies (pp. 57–78). Boston: Kluwer Academic Publishers.Dopfer, K., Foster, J., & Potts, J. (2004). Micro-meso-macro. Journal of Evolutionary Economics, 14, 263–279.Edquist, C., & Hommen, L. (2008). Comparing national systems of innovation in Asia and Europe: Theory and comparative framework. In C. Edquist & L. Hommen (Eds.), Small country innovation systems: Globalisation, change and policy in Asia and Europe (pp. 1–28). Cheltenham: Edward Elgar.Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. American Economic Review, 84, 66–83.Farrell, M. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society, Series A, General, 120(3), 253–281.Førsund, F. R. (1993). Productivity growth in Norwegian ferries. In H. O. Fried, C. A. K. Lovell, & S. S. Schmidt (Eds.), The measurement of productive efficiency: Techniques and applications (pp. 352–373). New York: Oxford University Press.Førsund, F. R. (1997). The Malmquist productivity index, TFP and scale. University of Oslo, Oslo: Working Paper, Department of Economics and Business Administration.Freeman, C. (1987). Technology policy and economic performance: Lessons from Japan. London: Printer Publishers.García-Martínez, M., & Briz, J. (2000). Innovation in the Spanish food & drink industry. International Food and Agribusiness Management Review, 3, 155–176.Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. London: Sage Publications.Grammatikopoulos, V., Kousteiios, A., Tsigilis, N., & Theodorakis, Y. (2004). Applying dynamic evaluation approach in education. Studies in Educational Evaluation, 30, 255–263.Grifell-Tatjé, E., & Lovell, C. A. K. (1999). A generalized Malmquist productivity index. Top, 7(1), 81–101.Grimpe, C., & Sofka, W. (2007). Search patterns and absorptive capacity: A comparison of low- and high-technology firms from thirteen European countries. Discussion paper no. 07-062. Centre for European Economic Research (ZEW), Mannheim, Germany.Guan, J., & Wang, J. (2004). Evaluation and interpretation of knowledge production efficiency. Scientometrics, 59(1), 131–155.Hekkert, M. P., Suurs, R. A. A., Negro, S. O., Kuhlmann, S., & Smits, R. E. H. M. (2007). Functions of innovation systems: A new approach for analysing technological change. Technological Forecasting and Social Change, 74, 413–432.Jiménez-Sáez, F. (2005). Una Evaluación del Programa Nacional de Tecnología de Alimentos: análisis de la articulación fomentada sobre el Sistema Alimentario de Innovación en España. PhD dissertation, Servicio de Publicaciones de la Universidad Politécnica de Valencia, Valencia.Jiménez-Sáez, F., Zabala-Iturriagagoitia, J. M., Zofío, J. L., & Castro-Martínez, E. (2011). Evaluating research efficiency within National R&D Programmes. Research Policy, 40, 230–241.Kao, C. (2008). Efficiency analysis of university departments: An empirical study. OMEGA, 36, 653–664.Kuhlmann, S. (2003). Evaluation of research and innovation policies: A discussion of trends with examples from Germany. International Journal of Technology Management, 26, 131–149.Laitinen, E. K. (2002). A dynamic performance measurement system: Evidence from small Finnish technology companies. Scandinavian Journal of Management, 18, 65–99.Laranja, M., Uyarra, E., & Flanagan, K. (2008). Policies for science, technology and innovation: Translating rationales into regional policies in a multi-level setting. Research Policy, 37(5), 823–835.Lee, T.-L., & von Tunzelman, N. (2005). A dynamic analytic approach to national innovation systems: The IC industry in Taiwan. Research Policy, 34, 425–440.Lipsey, R., & Carlaw, K. (1998). A structuralist assessment of technology policies: Taking Schumpeter seriously on policy. Ottawa: Industry Canada Research Publications Program.Lipsey, R., Carlaw, K., & Bekar, C. (2005). Economic transformations: General purpose technologies and long term economic growth. Oxford: Oxford University Press.Lundvall, B. Å. (1992). National systems of innovation: Toward a theory of innovation and interactive learning. London: Printer Publishers.Lundvall, B. Å., Johnson, B., Andersen, E. S., & Dalum, B. (2002). National systems of production, innovation and competence building. Research Policy, 31, 213–231.Markard, J., & Truffer, B. (2008). Actor-oriented analysis of innovation systems: Exploring micro-meso level linkages in the case of stationary fuel cells. Technology Analysis & Strategic Management, 20, 443–464.Metcalfe, J. S. (2002). Equilibrium and evolutionary foundations of competition and technology policy: New perspectives on the division of labour and the innovation process. CRIC Working Papers series, University of Manchester.Miettinen, R. (1999). The riddle of things. Activity theory and actor network theory as approaches of studying innovations. Mind, Culture and Activity, 6, 170–195.Molas-Gallart, J., & Davies, A. (2006). Toward theory-led evaluation: The experience of European science, technology, and innovation policies. American Journal of Evaluation, 27, 64–82.Mytelka, L. K., & Smith, K. (2002). Policy learning and innovation theory: An interactive and co-evolving process. Research Policy, 31, 1467–1479.Olazarán, M., Lavía, C., & Otero, B. (2004). ¿Hacia una segunda transición en la ciencia? Política científica y grupos de investigación. Revista Española de Sociología, 4, 143–172.Potts, J. (2007). The innovation system & economic evolution. Productivity commission submission, public support for science & innovation, productivity commission, Camberra.Ray, S., & Desli, E. (1997). Productivity growth, technical progress, and efficiency change in industrialized countries: Comment. American Economic Review, 87(5), 1033–1039.Rip, A., & Nederhof, A. J. (1986). Between dirigism and laissez-faire: Effects of implementing the science policy priority for biotechnology in the Netherlands. Research Policy, 15, 253–268.Schmidt, E. K., Graversen, E. K., & Langberg, K. (2003). Innovation and dynamics in public research environments in Denmark: A research-policy perspective. Science and Public Policy, 30, 107–116.Schmoch, U., & Schubert, T. (2009). Sustainability of incentives for excellent research—The German case. Scientometrics, 81(1), 195–218.Shephard, R. (1970). Theory of cost and production functions. New Jersey: Princeton University Press.Simar, L., & Wilson, P. W. (1998). Productivity growth in industrialized countries. Discussion paper 9810, Universite Catholique de Louvain, Belgium.Van Raan, A. F. J. (2000). R&D evaluation at the beginning of the new century. Research Evaluation, 8, 81–86.Zofio, J. L. (2007). Malmquist productivity index decompositions: A unifying framework. Applied Economics, 39, 2371–2387.Zofio, J. L., & Lovell, C. A. K. (1998). Yet another Malmquist productivity index decomposition. Working paper, Department of Economics, University of Georgia, Athens, GA 30602, USA.Zofio, J. L., & Lovell, C. A. K. (2001). Graph efficiency and productivity measures: An application to US agriculture. Applied Economics, 33(10), 1433–1442.Zofio, J. L., & Prieto, A. M. (2006). Return to dollar, generalized distance function and the Fisher productivity index. Spanish Economic Review, 8, 113–138

    Non-Invasive Detection of a Small Number of Bioluminescent Cancer Cells In Vivo

    Get PDF
    Early detection of tumors can significantly improve the outcome of tumor treatment. One of the most frequently asked questions in cancer imaging is how many cells can be detected non-invasively in a live animal. Although many factors limit such detection, increasing the light emission from cells is one of the most effective ways of overcoming these limitations. Here, we describe development and utilization of a lentiviral vector containing enhanced firefly luciferase (luc2) gene. The resulting single cell clones of the mouse mammary gland tumor (4T1-luc2) showed stable light emission in the range of 10,000 photons/sec/cell. In some cases individual 4T1-luc2 cells inserted under the skin of a nu/nu mouse could be detected non-invasively using a cooled CCD camera in some cases. In addition, we showed that only few cells are needed to develop tumors in these mice and tumor progression can be monitored right after the cells are implanted. Significantly higher luciferase activity in these cells allowed us to detect micrometastases in both, syngeneic Balb/c and nu/nu mice

    Inner-sphere oxidation of ternary iminodiacetatochromium(III) complexes involving DL-valine and L-arginine as secondary ligands. Isokinetic relationship for the oxidation of ternary iminodiacetato-chromium(III) complexes by periodate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this paper, the kinetics of oxidation of [Cr<sup>III</sup>(HIDA)(Val)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>and [Cr<sup>III</sup>(HIDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>(HIDA = iminodiacetic acid, Val = DL-valine and Arg = L-arginine) were studied. The choice of ternary complexes was attributed to two considerations. Firstly, in order to study the effect of the secondary ligands DL-valine and L-arginine on the stability of binary complex [Cr<sup>III</sup>(HIDA)(IDA)(H<sub>2</sub>O)] towards oxidation. Secondly, transition metal ternary complexes have received particular focus and have been employed in mapping protein surfaces as probes for biological redox centers and in protein capture for both purification and study.</p> <p>Results</p> <p>The results have shown that the reaction is first order with respect to both [IO<sub>4</sub><sup>-</sup>] and the complex concentration, and the rate increases over the pH range 2.62 – 3.68 in both cases. The experimental rate law is consistent with a mechanism in which both the deprotonated forms of the complexes [Cr<sup>III</sup>(IDA)(Val)(H<sub>2</sub>O)<sub>2</sub>] and [Cr<sup>III</sup>(IDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>] are significantly more reactive than the conjugate acids. The value of the intramolecular electron transfer rate constant for the oxidation of [Cr<sup>III</sup>(HIDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>]<sup>+</sup>, <it>k</it><sub>3 </sub>(1.82 × 10<sup>-3 </sup>s<sup>-1</sup>), is greater than the value of <it>k</it><sub>1 </sub>(1.22 × 10<sup>-3 </sup>s<sup>-1</sup>) for the oxidation of [Cr<sup>III</sup>(HIDA)(Val)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>at 45.0°C and <it>I </it>= 0.20 mol dm<sup>-3</sup>. It is proposed that electron transfer proceeds through an inner-sphere mechanism <it>via </it>coordination of IO<sub>4</sub><sup>- </sup>to chromium(III).</p> <p>Conclusion</p> <p>The oxidation of [Cr<sup>III</sup>(HIDA)(Val)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>and [Cr<sup>III</sup>(HIDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>by periodate may proceed through an inner-sphere mechanism via two electron transfer giving chromium(VI). The value of the intramolecular electron transfer rate constant for the oxidation of [Cr<sup>III</sup>(HIDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>]<sup>+</sup>, <it>k</it><sub>3</sub>, is greater than the value of <it>k</it><sub>1 </sub>for the oxidation of [Cr<sup>III</sup>(HIDA)(Val)(H<sub>2</sub>O)<sub>2</sub>]<sup>+</sup>. A common mechanism for the oxidation of ternary iminodiacetatochromium(III) complexes by periodate is proposed, and this is supported by an excellent isokinetic relationship between ΔH* and ΔS* values for these reactions.</p

    EGFR Tyrosine Kinase Inhibitors Activate Autophagy as a Cytoprotective Response in Human Lung Cancer Cells

    Get PDF
    Epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib have been widely used in patients with non-small-cell lung cancer. Unfortunately, the efficacy of EGFR-TKIs is limited because of natural and acquired resistance. As a novel cytoprotective mechanism for tumor cell to survive under unfavorable conditions, autophagy has been proposed to play a role in drug resistance of tumor cells. Whether autophagy can be activated by gefitinib or erlotinib and thereby impair the sensitivity of targeted therapy to lung cancer cells remains unknown. Here, we first report that gefitinib or erlotinib can induce a high level of autophagy, which was accompanied by the inhibition of the PI3K/Akt/mTOR signaling pathway. Moreover, cytotoxicity induced by gefitinib or erlotinib was greatly enhanced after autophagy inhibition by the pharmacological inhibitor chloroquine (CQ) and siRNAs targeting ATG5 and ATG7, the most important components for the formation of autophagosome. Interestingly, EGFR-TKIs can still induce cell autophagy even after EGFR expression was reduced by EGFR specific siRNAs. In conclusion, we found that autophagy can be activated by EGFR-TKIs in lung cancer cells and inhibition of autophagy augmented the growth inhibitory effect of EGFR-TKIs. Autophagy inhibition thus represents a promising approach to improve the efficacy of EGFR-TKIs in the treatment of patients with advanced non-small-cell lung cancer
    corecore