692 research outputs found

    nIFTy Galaxy Cluster simulations VI: The dynamical imprint of substructure on gaseous cluster outskirts

    Get PDF
    Galaxy cluster outskirts mark the transition region from the mildly non-linear cosmic web to the highly non-linear, virialised, cluster interior. It is in this transition region that the intra-cluster medium (ICM) begins to influence the properties of accreting galaxies and groups, as ram pressure impacts a galaxy's cold gas content and subsequent star formation rate. Conversely, the thermodynamical properties of the ICM in this transition region should also feel the influence of accreting substructure (i.e. galaxies and groups), whose passage can drive shocks. In this paper, we use a suite of cosmological hydrodynamical zoom simulations of a single galaxy cluster, drawn from the nIFTy comparison project, to study how the dynamics of substructure accreted from the cosmic web influences the thermodynamical properties of the ICM in the cluster's outskirts. We demonstrate how features evident in radial profiles of the ICM (e.g. gas density and temperature) can be linked to strong shocks, transient and short-lived in nature, driven by the passage of substructure. The range of astrophysical codes and galaxy formation models in our comparison are broadly consistent in their predictions (e.g. agreeing when and where shocks occur, but differing in how strong shocks will be); this is as we would expect of a process driven by large-scale gravitational dynamics and strong, inefficiently radiating, shocks. This suggests that mapping such shock structures in the ICM in a cluster's outskirts (via e.g. radio synchrotron emission) could provide a complementary measure of its recent merger and accretion history

    nIFTY galaxy cluster simulations - III. The similarity and diversity of galaxies and subhaloes

    Get PDF
    We examine subhaloes and galaxies residing in a simulated Λ\Lambda cold dark matter galaxy cluster (M200critM^{crit} _{200} = 1.1 × 1015^{15} h1h^{−1} M_\odot) produced by hydrodynamical codes ranging from classic smooth particle hydrodynamics (SPH), newer SPH codes, adaptive and moving mesh codes. These codes use subgrid models to capture galaxy formation physics. We compare how well these codes reproduce the same subhaloes/galaxies in gravity-only, non-radiative hydrodynamics and full feedback physics\textit{full feedback physics} runs by looking at the overall subhalo/galaxy distribution and on an individual object basis. We find that the subhalo population is reproduced to within \lesssim10 per cent for both dark matter only and non-radiative runs, with individual objects showing code-to-code scatter of \lesssim0.1 dex, although the gas in non-radiative simulations shows significant scatter. Including feedback physics significantly increases the diversity. Subhalo mass and VmaxV_{max} distributions vary by ≈20 per cent. The galaxy populations also show striking code-to-code variations. Although the Tully–Fisher relation is similar in almost all codes, the number of galaxies with 109^9 h1h^{−1} M_\odot \lesssim MM_∗ \lesssim 1012^{12} h1h^{−1} M_\odot can differ by a factor of 4. Individual galaxies show code-to-code scatter of ~0.5 dex in stellar mass. Moreover, systematic differences exist, with some codes producing galaxies 70 per cent smaller than others. The diversity partially arises from the inclusion/absence of active galactic nucleus feedback. Our results combined with our companion papers demonstrate that subgrid physics is not just subject to fine-tuning, but the complexity of building galaxies in all environments\textit{in all environments} remains a challenge. We argue that even basic galaxy properties, such as stellar mass to halo mass, should be treated with errors bars of ~0.2–0.4 dex

    nIFTY galaxy cluster simulations - III. The similarity and diversity of galaxies and subhaloes

    Get PDF
    We examine subhaloes and galaxies residing in a simulated Λ\Lambda cold dark matter galaxy cluster (M200critM^{crit} _{200} = 1.1 × 1015^{15} h1h^{−1} M_\odot) produced by hydrodynamical codes ranging from classic smooth particle hydrodynamics (SPH), newer SPH codes, adaptive and moving mesh codes. These codes use subgrid models to capture galaxy formation physics. We compare how well these codes reproduce the same subhaloes/galaxies in gravity-only, non-radiative hydrodynamics and full feedback physics\textit{full feedback physics} runs by looking at the overall subhalo/galaxy distribution and on an individual object basis. We find that the subhalo population is reproduced to within \lesssim10 per cent for both dark matter only and non-radiative runs, with individual objects showing code-to-code scatter of \lesssim0.1 dex, although the gas in non-radiative simulations shows significant scatter. Including feedback physics significantly increases the diversity. Subhalo mass and VmaxV_{max} distributions vary by ≈20 per cent. The galaxy populations also show striking code-to-code variations. Although the Tully–Fisher relation is similar in almost all codes, the number of galaxies with 109^9 h1h^{−1} M_\odot \lesssim MM_∗ \lesssim 1012^{12} h1h^{−1} M_\odot can differ by a factor of 4. Individual galaxies show code-to-code scatter of ~0.5 dex in stellar mass. Moreover, systematic differences exist, with some codes producing galaxies 70 per cent smaller than others. The diversity partially arises from the inclusion/absence of active galactic nucleus feedback. Our results combined with our companion papers demonstrate that subgrid physics is not just subject to fine-tuning, but the complexity of building galaxies in all environments\textit{in all environments} remains a challenge. We argue that even basic galaxy properties, such as stellar mass to halo mass, should be treated with errors bars of ~0.2–0.4 dex

    nIFTy galaxy cluster simulations – V. Investigation of the cluster infall region

    Get PDF
    We examine the properties of the galaxies and dark matter haloes residing in the cluster infall region surrounding the simulated Λ\Lambda cold dark matter galaxy cluster studied by Elahi et al. at zz = 0. The 1.1 × 1015^{15} h1h^{−1} M_\odot galaxy cluster has been simulated with eight different hydrodynamical codes containing a variety of hydrodynamic solvers and sub-grid schemes. All models completed a dark-matter-only, non-radiative and full-physics run from the same initial conditions. The simulations contain dark matter and gas with mass resolution mDMm_\text{DM} = 9.01 × 108^8 h1h^{−1} M_\odot and mgasm_\text{gas} = 1.9 × 108^8 h1h^{−1} M_\odot, respectively. We find that the synthetic cluster is surrounded by clear filamentary structures that contain ~60 per cent of haloes in the infall region with mass ~1012.5^{12.5}–1014^{14} h1h^{−1} M_\odot, including 2–3 group-sized haloes (>1013^{13} h1h^{−1} M_\odot). However, we find that only ~10 per cent of objects in the infall region are sub-haloes residing in haloes, which may suggest that there is not much ongoing pre-processing occurring in the infall region at zz = 0. By examining the baryonic content contained within the haloes, we also show that the code-to-code scatter in stellar fraction across all halo masses is typically ~2 orders of magnitude between the two most extreme cases, and this is predominantly due to the differences in sub-grid schemes and calibration procedures that each model uses. Models that do not include active galactic nucleus feedback typically produce too high stellar fractions compared to observations by at least ~1 order of magnitude.The authors would like the acknowledge the Centre for High Performance Computing in Rosebank, Cape Town, for financial support and for hosting the ‘Comparison Cape Town’ workshop in 2016, July. The authors would further like to acknowledge the support of the International Centre for Radio Astronomy Research (ICRAR) node at the University of Western Australia (UWA) in hosting the precursor workshop ‘Perth Simulated Cluster Comparison’ in 2015, March; the financial support of the UWA Research Collaboration Award 2014 and 2015 schemes; the financial support of the ARC Centre of Excellence for All Sky Astrophysics (CAASTRO) CE110001020 and ARC Discovery Projects DP130100117 and DP140100198. We would also like to thank the Instituto de Fisica Teorica (IFT-UAM/CSIC in Madrid) for its support, via the Centro de Excelencia Severo Ochoa Program under Grant No. SEV- 2012-0249, during the three-week workshop ‘nIFTy Cosmology’ in 2014, where the foundation for the whole comparison project was established. JA acknowledges support from a post-graduate award from STFC. PJE is supported by the SSimPL programme and the Sydney Institute for Astronomy (SIfA) and Australian Research Council (ARC) grants DP130100117 and DP140100198. AK is supported by the Ministerio de Econom´ıa y Competitividad (MINECO) in Spain through grant AYA2012-31101 as well as the ConsoliderIngenio 2010 Programme of the Spanish Ministerio de Ciencia e Innovacion (MICINN) under grant MultiDark CSD2009-00064. ´ He also acknowledges support from the ARC grant DP140100198. He further thanks Noonday Underground for surface noise. STK acknowledges support from STFC through grant ST/L000768/1. CP acknowledges the support of the ARC through Future Fellowship FT130100041 and Discovery Project DP140100198. WC and CP acknowledge the support of ARC DP130100117. GY and FS acknowledge support from MINECO (Spain) through the grant AYA 2012-31101. GY thanks also the Red Espanola de Supercomputa- ˜ cion for granting the computing time in the Marenostrum Supercomputer at BSC, where all the MUSIC simulations have been performed. AMB is supported by the DFG Research Unit 1254 ‘Magnetisation of interstellar and intergalactic media’ and by the DFG Cluster of Excellence ‘Universe’. GM acknowledge support from the PRIN-MIUR 2012 Grant ‘The Evolution of Cosmic Baryons’ funded by the Italian Minister of University and Research, by the PRIN-INAF 2012 Grant ‘Multi-scale Simulations of Cosmic Structures’, by the INFN INDARK Grant and by the ‘Consorzio per la Fisica di Trieste’. IGM acknowledges support from an STFC Advanced Fellowship. EP acknowledges support by the ERC grant ‘The Emergence of Structure During the Epoch of Reionization’

    nIFTy galaxy cluster simulations II: radiative models

    Get PDF
    We have simulated the formation of a massive galaxy cluster (M200crit_{200}^{\rm crit} = 1.1×\times1015h1M^{15}h^{-1}M_{\odot}) in a Λ\LambdaCDM universe using 10 different codes (RAMSES, 2 incarnations of AREPO and 7 of GADGET), modeling hydrodynamics with full radiative subgrid physics. These codes include Smoothed-Particle Hydrodynamics (SPH), spanning traditional and advanced SPH schemes, adaptive mesh and moving mesh codes. Our goal is to study the consistency between simulated clusters modeled with different radiative physical implementations - such as cooling, star formation and AGN feedback. We compare images of the cluster at z=0z=0, global properties such as mass, and radial profiles of various dynamical and thermodynamical quantities. We find that, with respect to non-radiative simulations, dark matter is more centrally concentrated, the extent not simply depending on the presence/absence of AGN feedback. The scatter in global quantities is substantially higher than for non-radiative runs. Intriguingly, adding radiative physics seems to have washed away the marked code-based differences present in the entropy profile seen for non-radiative simulations in Sembolini et al. (2015): radiative physics + classic SPH can produce entropy cores. Furthermore, the inclusion/absence of AGN feedback is not the dividing line -as in the case of describing the stellar content- for whether a code produces an unrealistic temperature inversion and a falling central entropy profile. However, AGN feedback does strongly affect the overall stellar distribution, limiting the effect of overcooling and reducing sensibly the stellar fraction

    How Do Galaxies Get Their Gas?

    Get PDF
    Not the way one might have thought. In hydrodynamic simulations of galaxy formation, some gas follows the traditionally envisioned route, shock heating to the halo virial temperature before cooling to the much lower temperature of the neutral ISM. But most gas enters galaxies without ever heating close to the virial temperature, gaining thermal energy from weak shocks and adiabatic compression, and radiating it just as quickly. This ``cold mode'' accretion is channeled along filaments, while the conventional, ``hot mode'' accretion is quasi-spherical. Cold mode accretion dominates high redshift growth by a substantial factor, while at z<1 the overall accretion rate declines and hot mode accretion has greater relative importance. The decline of the cosmic star formation rate at low z is driven largely by geometry, as the typical cross section of filaments begins to exceed that of the galaxies at their intersections.Comment: 7 pages, 1 figure. To be published in the proceedings of the IGM/Galaxy Connection- The Distribution of Baryons at z=0 conferenc

    Precision of genetic parameters and breeding values estimated in marker assisted BLUP genetic evaluation

    Get PDF
    In practical implementations of marker-assisted selection economic and logistic restrictions frequently lead to incomplete genotypic data for the animals of interest. This may result in bias and larger standard errors of the estimated parameters and, as a consequence, reduce the benefits of applying marker-assisted selection. Our study examines the impact of the following factors: phenotypic information, depth of pedigree, and missing genotypes in the application of marker-assisted selection. Stochastic simulations were conducted to generate a typical dairy cattle population. Genetic parameters and breeding values were estimated using a two-step approach. First, pre-corrected phenotypes (daughter yield deviations (DYD) for bulls, yield deviations (YD) for cows) were calculated in polygenic animal models for the entire population. These estimated phenotypes were then used in marker assisted BLUP (MA-BLUP) evaluations where only the genotyped animals and their close relatives were included

    nIFTy galaxy cluster simulations I: dark matter & non-radiative models

    Get PDF
    We have simulated the formation of a galaxy cluster in a Λ\LambdaCDM universe using twelve different codes modeling only gravity and non-radiative hydrodynamics (\art, \arepo, \hydra\ and 9 incarnations of GADGET). This range of codes includes particle based, moving and fixed mesh codes as well as both Eulerian and Lagrangian fluid schemes. The various GADGET implementations span traditional and advanced smoothed-particle hydrodynamics (SPH) schemes. The goal of this comparison is to assess the reliability of cosmological hydrodynamical simulations of clusters in the simplest astrophysically relevant case, that in which the gas is assumed to be non-radiative. We compare images of the cluster at z=0z=0, global properties such as mass, and radial profiles of various dynamical and thermodynamical quantities. The underlying gravitational framework can be aligned very accurately for all the codes allowing a detailed investigation of the differences that develop due to the various gas physics implementations employed. As expected, the mesh-based codes ART and AREPO form extended entropy cores in the gas with rising central gas temperatures. Those codes employing traditional SPH schemes show falling entropy profiles all the way into the very centre with correspondingly rising density profiles and central temperature inversions. We show that methods with modern SPH schemes that allow entropy mixing span the range between these two extremes and the latest SPH variants produce gas entropy profiles that are essentially indistinguishable from those obtained with grid based methods

    The feasibility of gene therapy in the treatment of head and neck cancer

    Get PDF
    Standard approach to the treatment of head and neck cancer include surgery, chemotherapy, and radiation. More recently, dramatic increases in our knowledge of the molecular and genetic basis of cancer combined with advances in technology have resulted in novel molecular therapies for this disease. In particular, gene therapy, which involves the transfer of genetic material to cells to produce a therapeutic effect, has become a promising approach. Clinical trials concerning gene therapy strategies in head and neck cancer as well as combination of these strategies with chemotherapy and radiation therapy will be discussed

    Aboveground Herbivory Shapes the Biomass Distribution and Flux of Soil Invertebrates

    Get PDF
    Contains fulltext : 72659.pdf ( ) (Open Access)Background Living soil invertebrates provide a universal currency for quality that integrates physical and chemical variables with biogeography as the invertebrates reflect their habitat and most ecological changes occurring therein. The specific goal was the identification of “reference” states for soil sustainability and ecosystem functioning in grazed vs. ungrazed sites. Methodology/Principal Findings Bacterial cells were counted by fluorescent staining and combined direct microscopy and automatic image analysis; invertebrates (nematodes, mites, insects, oligochaetes) were sampled and their body size measured individually to allow allometric scaling. Numerical allometry analyses food webs by a direct comparison of weight averages of components and thus might characterize the detrital soil food webs of our 135 sites regardless of taxonomy. Sharp differences in the frequency distributions are shown. Overall higher biomasses of invertebrates occur in grasslands, and all larger soil organisms differed remarkably. Conclusions/Significance Strong statistical evidence supports a hypothesis explaining from an allometric perspective how the faunal biomass distribution and the energetic flux are affected by livestock, nutrient availability and land use. Our aim is to propose faunal biomass flux and biomass distribution as quantitative descriptors of soil community composition and function, and to illustrate the application of these allometric indicators to soil systems.7 p
    corecore