20 research outputs found
Reverberation Mapping and the Physics of Active Galactic Nuclei
Reverberation-mapping campaigns have revolutionized our understanding of AGN.
They have allowed the direct determination of the broad-line region size,
enabled mapping of the gas distribution around the central black hole, and are
starting to resolve the continuum source structure. This review describes the
recent and successful campaigns of the International AGN Watch consortium,
outlines the theoretical background of reverberation mapping and the
calculation of transfer functions, and addresses the fundamental difficulties
of such experiments. It shows that such large-scale experiments have resulted
in a ``new BLR'' which is considerably different from the one we knew just ten
years ago. We discuss in some detail the more important new results, including
the luminosity-size-mass relationship for AGN, and suggest ways to proceed in
the near future.Comment: Review article to appear in Astronomical Time Series, Proceedings of
the Wise Observatory 25th Ann. Symposium. 24 pages including 7 figure
Interstellar Turbulence II: Implications and Effects
Interstellar turbulence has implications for the dispersal and mixing of the
elements, cloud chemistry, cosmic ray scattering, and radio wave propagation
through the ionized medium. This review discusses the observations and theory
of these effects. Metallicity fluctuations are summarized, and the theory of
turbulent transport of passive tracers is reviewed. Modeling methods, turbulent
concentration of dust grains, and the turbulent washout of radial abundance
gradients are discussed. Interstellar chemistry is affected by turbulent
transport of various species between environments with different physical
properties and by turbulent heating in shocks, vortical dissipation regions,
and local regions of enhanced ambipolar diffusion. Cosmic rays are scattered
and accelerated in turbulent magnetic waves and shocks, and they generate
turbulence on the scale of their gyroradii. Radio wave scintillation is an
important diagnostic for small scale turbulence in the ionized medium, giving
information about the power spectrum and amplitude of fluctuations. The theory
of diffraction and refraction is reviewed, as are the main observations and
scintillation regions.Comment: 46 pages, 2 figures, submitted to Annual Reviews of Astronomy and
Astrophysic
Quasi-Normal Modes of Stars and Black Holes
Perturbations of stars and black holes have been one of the main topics of
relativistic astrophysics for the last few decades. They are of particular
importance today, because of their relevance to gravitational wave astronomy.
In this review we present the theory of quasi-normal modes of compact objects
from both the mathematical and astrophysical points of view. The discussion
includes perturbations of black holes (Schwarzschild, Reissner-Nordstr\"om,
Kerr and Kerr-Newman) and relativistic stars (non-rotating and
slowly-rotating). The properties of the various families of quasi-normal modes
are described, and numerical techniques for calculating quasi-normal modes
reviewed. The successes, as well as the limits, of perturbation theory are
presented, and its role in the emerging era of numerical relativity and
supercomputers is discussed.Comment: 74 pages, 7 figures, Review article for "Living Reviews in
Relativity
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
Exploiting solar visible-range observations by inversion techniques: from flows in the solar subsurface to a flaring atmosphere
Observations of the Sun in the visible spectral range belong to standard
measurements obtained by instruments both on the ground and in the space.
Nowadays, both nearly continuous full-disc observations with medium resolution
and dedicated campaigns of high spatial, spectral and/or temporal resolution
constitute a holy grail for studies that can capture (both) the long- and
short-term changes in the dynamics and energetics of the solar atmosphere.
Observations of photospheric spectral lines allow us to estimate not only the
intensity at small regions, but also various derived data products, such as the
Doppler velocity and/or the components of the magnetic field vector. We show
that these measurements contain not only direct information about the dynamics
of solar plasmas at the surface of the Sun but also imprints of regions below
and above it. Here, we discuss two examples: First, the local time-distance
helioseismology as a tool for plasma dynamic diagnostics in the near subsurface
and second, the determination of the solar atmosphere structure during flares.
The methodology in both cases involves the technique of inverse modelling.Comment: 29 pages, 15 figures. Accepted for publication in the book "Reviews
in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds
Kabath, Jones and Skarka; publisher Springer Nature) funded by the European
Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul"
2017-1-CZ01-KA203-03556
The Confrontation between General Relativity and Experiment
The status of experimental tests of general relativity and of theoretical
frameworks for analysing them is reviewed. Einstein's equivalence principle
(EEP) is well supported by experiments such as the Eotvos experiment, tests of
special relativity, and the gravitational redshift experiment. Future tests of
EEP and of the inverse square law are searching for new interactions arising
from unification or quantum gravity. Tests of general relativity at the
post-Newtonian level have reached high precision, including the light
deflection, the Shapiro time delay, the perihelion advance of Mercury, and the
Nordtvedt effect in lunar motion. Gravitational-wave damping has been detected
in an amount that agrees with general relativity to better than half a percent
using the Hulse-Taylor binary pulsar, and other binary pulsar systems have
yielded other tests, especially of strong-field effects. When direct
observation of gravitational radiation from astrophysical sources begins, new
tests of general relativity will be possible.Comment: 89 pages, 8 figures; an update of the Living Review article
originally published in 2001; final published version incorporating referees'
suggestion
