402 research outputs found

    Risk of Liver Injury Associated with Chinese Herbal Products Containing Radix bupleuri in 639,779 Patients with Hepatitis B Virus Infection

    Get PDF
    and the risk of hospitalisation related to liver injury among HBV-infected patients in Taiwan. were assessed for any dose-response relationship. was 2.19 (95% CI: 1.66 to 2.89). The results using the case-crossover design remained similar. in HBV-infected patients might increase their risks of liver injury. Further studies are indicated to corroborate the above findings

    An experimental investigation into the dimensional error of powder-binder three-dimensional printing

    Get PDF
    This paper is an experimental investigation into the dimensional error of the rapid prototyping additive process of powder-binder three-dimensional printing. Ten replicates of a purpose-designed part were produced using a three-dimensional printer, and measurements of the internal and external features of all surfaces were made using a general purpose coordinate measuring machine. The results reveal that the bases of all replicates (nominally flat) have a concave curvature, producing a flatness error of the primary datum. This is in contrast to findings regarding other three-dimensional printing processes, widely reported in the literature, where a convex curvature was observed. All external surfaces investigated in this study showed positive deviation from nominal values, especially in the z-axis. The z-axis error consisted of a consistent positive cumulative error and a different constant error in different replicates. By compensating for datum surface error, the average total height error of the test parts can be reduced by 25.52 %. All the dimensional errors are hypothesised to be explained by expansion and the subsequent distortion caused by layer interaction during and after the printing process

    Drug Metabolism in Human Brain: High Levels of Cytochrome P4503A43 in Brain and Metabolism of Anti-Anxiety Drug Alprazolam to Its Active Metabolite

    Get PDF
    Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more α-hydroxy alprazolam (α-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both α-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of α-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of α-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action

    Correlation of microarray-based breast cancer molecular subtypes and clinical outcomes: implications for treatment optimization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Optimizing treatment through microarray-based molecular subtyping is a promising method to address the problem of heterogeneity in breast cancer; however, current application is restricted to prediction of distant recurrence risk. This study investigated whether breast cancer molecular subtyping according to its global intrinsic biology could be used for treatment customization.</p> <p>Methods</p> <p>Gene expression profiling was conducted on fresh frozen breast cancer tissue collected from 327 patients in conjunction with thoroughly documented clinical data. A method of molecular subtyping based on 783 probe-sets was established and validated. Statistical analysis was performed to correlate molecular subtypes with survival outcome and adjuvant chemotherapy regimens. Heterogeneity of molecular subtypes within groups sharing the same distant recurrence risk predicted by genes of the Oncotype and MammaPrint predictors was studied.</p> <p>Results</p> <p>We identified six molecular subtypes of breast cancer demonstrating distinctive molecular and clinical characteristics. These six subtypes showed similarities and significant differences from the Perou-Sørlie intrinsic types. Subtype I breast cancer was in concordance with chemosensitive basal-like intrinsic type. Adjuvant chemotherapy of lower intensity with CMF yielded survival outcome similar to those of CAF in this subtype. Subtype IV breast cancer was positive for ER with a full-range expression of HER2, responding poorly to CMF; however, this subtype showed excellent survival when treated with CAF. Reduced expression of a gene associated with methotrexate sensitivity in subtype IV was the likely reason for poor response to methotrexate. All subtype V breast cancer was positive for ER and had excellent long-term survival with hormonal therapy alone following surgery and/or radiation therapy. Adjuvant chemotherapy did not provide any survival benefit in early stages of subtype V patients. Subtype V was consistent with a unique subset of luminal A intrinsic type. When molecular subtypes were correlated with recurrence risk predicted by genes of Oncotype and MammaPrint predictors, a significant degree of heterogeneity within the same risk group was noted. This heterogeneity was distributed over several subtypes, suggesting that patients in the same risk groups require different treatment approaches.</p> <p>Conclusions</p> <p>Our results indicate that the molecular subtypes established in this study can be utilized for customization of breast cancer treatment.</p

    249 TP53 mutation has high prevalence and is correlated with larger and poorly differentiated HCC in Brazilian patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ser-249 TP53 mutation (249<sup>Ser</sup>) is a molecular evidence for aflatoxin-related carcinogenesis in Hepatocellular Carcinoma (HCC) and it is frequent in some African and Asian regions, but it is unusual in Western countries. HBV has been claimed to add a synergic effect on genesis of this particular mutation with aflatoxin. The aim of this study was to investigate the frequency of 249<sup>Ser </sup>mutation in HCC from patients in Brazil.</p> <p>Methods</p> <p>We studied 74 HCC formalin fixed paraffin blocks samples of patients whom underwent surgical resection in Brazil. 249<sup>Ser </sup>mutation was analyzed by RFLP and DNA sequencing. HBV DNA presence was determined by Real-Time PCR.</p> <p>Results</p> <p>249<sup>Ser </sup>mutation was found in 21/74 (28%) samples while HBV DNA was detected in 13/74 (16%). 249<sup>Ser </sup>mutation was detected in 21/74 samples by RFLP assay, of which 14 were confirmed by 249<sup>Ser </sup>mutant-specific PCR, and 12 by nucleic acid sequencing. All HCC cases with p53-249ser mutation displayed also wild-type p53 sequences. Poorly differentiated HCC was more likely to have 249<sup>Ser </sup>mutation (OR = 2.415, 95% CI = 1.001 – 5.824, p = 0.05). The mean size of 249<sup>Ser </sup>HCC tumor was 9.4 cm versus 5.5 cm on wild type HCC (p = 0.012). HBV DNA detection was not related to 249<sup>Ser </sup>mutation.</p> <p>Conclusion</p> <p>Our results indicate that 249<sup>Ser </sup>mutation is a HCC important factor of carcinogenesis in Brazil and it is associated to large and poorly differentiated tumors.</p

    Mis-Spliced Transcripts of Nicotinic Acetylcholine Receptor α6 Are Associated with Field Evolved Spinosad Resistance in Plutella xylostella (L.)

    Get PDF
    The evolution of insecticide resistance is a global constraint to agricultural production. Spinosad is a new, low-environmental-risk insecticide that primarily targets nicotinic acetylcholine receptors (nAChR) and is effective against a wide range of pest species. However, after only a few years of application, field evolved resistance emerged in the diamondback moth, Plutella xylostella, an important pest of brassica crops worldwide. Spinosad resistance in a Hawaiian population results from a single incompletely recessive and autosomal gene, and here we use AFLP linkage mapping to identify the chromosome controlling resistance in a backcross family. Recombinational mapping with more than 700 backcross progeny positioned a putative spinosad target, nAChR alpha 6 (Pxα6), at the resistance locus, PxSpinR. A mutation within the ninth intron splice junction of Pxα6 results in mis-splicing of transcripts, which produce a predicted protein truncated between the third and fourth transmembrane domains. Additional resistance-associated Pxα6 transcripts that excluded the mutation containing exon were detected, and these were also predicted to produce truncated proteins. Identification of the locus of resistance in this important crop pest will facilitate field monitoring of the spread of resistance and offer insights into the genetic basis of spinosad resistance in other species
    • …
    corecore