322 research outputs found
DeepBrain: Functional Representation of Neural In-Situ Hybridization Images for Gene Ontology Classification Using Deep Convolutional Autoencoders
This paper presents a novel deep learning-based method for learning a
functional representation of mammalian neural images. The method uses a deep
convolutional denoising autoencoder (CDAE) for generating an invariant, compact
representation of in situ hybridization (ISH) images. While most existing
methods for bio-imaging analysis were not developed to handle images with
highly complex anatomical structures, the results presented in this paper show
that functional representation extracted by CDAE can help learn features of
functional gene ontology categories for their classification in a highly
accurate manner. Using this CDAE representation, our method outperforms the
previous state-of-the-art classification rate, by improving the average AUC
from 0.92 to 0.98, i.e., achieving 75% reduction in error. The method operates
on input images that were downsampled significantly with respect to the
original ones to make it computationally feasible
Early clearance of Chikungunya virus in children is associated with a strong innate immune response
Chikungunya fever (CHIKF) is a global infectious disease which can affect a wide range of age groups. The pathological and immunological response upon Chikungunya virus (CHIKV) infection have been reported over the last few years. However, the clinical profile and immune response upon CHIKV infection in children remain largely unknown. In this study, we analyzed the clinical and immunological response, focusing on the cytokine/chemokine profile in a CHIKV-infected pediatric cohort from Sarawak, Malaysia. Unique immune mediators triggered upon CHIKV infection were identified through meta-analysis of the immune signatures between this pediatric group and cohorts from previous outbreaks. The data generated from this study revealed that a broad spectrum of cytokines/chemokines is up-regulated in a sub-group of virus-infected children stratified according to their viremic status during hospitalization. Furthermore, different immune mediator profiles (the levels of pro-inflammatory cytokines, chemokines and growth and other factors) were observed between children and adults. This study gives an important insight to understand the immune response of CHIKV infection in children and would aid in the development of better prognostics and clinical management for children
Patient-derived glioblastoma cells show significant heterogeneity in treatment responses to the inhibitor-of-apoptosis-protein antagonist birinapant.
BACKGROUND: Resistance to temozolomide (TMZ) greatly limits chemotherapeutic effectiveness in glioblastoma (GBM). Here we analysed the ability of the Inhibitor-of-apoptosis-protein (IAP) antagonist birinapant to enhance treatment responses to TMZ in both commercially available and patient-derived GBM cells.
METHODS: Responses to TMZ and birinapant were analysed in a panel of commercial and patient-derived GBM cell lines using colorimetric viability assays, flow cytometry, morphological analysis and protein expression profiling of pro- and antiapoptotic proteins. Responses in vivo were analysed in an orthotopic xenograft GBM model.
RESULTS: Single-agent treatment experiments categorised GBM cells into TMZ-sensitive cells, birinapant-sensitive cells, and cells that were insensitive to either treatment. Combination treatment allowed sensitisation to therapy in only a subset of resistant GBM cells. Cell death analysis identified three principal response patterns: Type A cells that readily activated caspase-8 and cell death in response to TMZ while addition of birinapant further sensitised the cells to TMZ-induced cell death; Type B cells that readily activated caspase-8 and cell death in response to birinapant but did not show further sensitisation with TMZ; and Type C cells that showed no significant cell death or moderately enhanced cell death in the combined treatment paradigm. Furthermore, in vivo, a Type C patient-derived cell line that was TMZ-insensitive in vitro and showed a strong sensitivity to TMZ and TMZ plus birinapant treatments.
CONCLUSIONS: Our results demonstrate remarkable differences in responses of patient-derived GBM cells to birinapant single and combination treatments, and suggest that therapeutic responses in vivo may be greatly affected by the tumour microenvironment
Grains of truth or transparent blindfolds?:A review of current debates in archaeological phytolith analysis
Recovering Dietary Information from Extant and Extinct Primates Using Plant Microremains
When reconstructing the diets of primates, researchers often rely on several well established methods, such as direct observation, studies of discarded plant parts, and analysis of macrobotanical remains in fecal matter. Most of these studies can be performed only on living primate groups, however, and the diets of extinct, subfossil, and fossil groups are known only from proxy methods. Plant microremains, tiny plant structures with distinctive morphologies, can record the exact plant foods that an individual consumed. They can be recovered from recently deceased and fossil primate samples, and can also be used to supplement traditional dietary analyses in living groups. Here I briefly introduce plant microremains, provide examples of how they have been successfully used to reconstruct the diets of humans and other species, and describe methods for their application in studies of primate dietary ecology
An evaluation of ultrasonic arrays for the static and dynamic measurement of wheel rail contact pressure and area
The interfacial contact conditions between a railway vehicle wheel and the rail are paramount to the lifespan, safety and smooth operation of any rail network. The wheel/rail
interface contact pressure and area conditions have been estimated, calculated and simulated by industry and academia for many years, but a method of accurately measuring
dynamic contact conditions has yet to be realised. Methods using pressure sensitive films and controlled air flow have been employed, but both are limited. Ultrasonic reflectometry
is the term given to active ultrasonics in which an ultrasonic transducer is mounted on the outer surface of a component and a sound wave is generated. This ultrasonic wave packet
propagates through the host medium and reflects off the contacting interface of interest. The reflected waveform is then detected and contact area and interfacial stiffness information can be extracted from the signal using the quasi-static spring model. Stiffness can be related to contact pressure by performing a simple calibration procedure. Previous contact pressure measurement work has relied on using a focusing transducer and a 2-dimensional scanning arrangement which results in a high resolution image of the wheel/rail contact, but is limited to static loading of a specimen cut from a wheel and rail.
The work described in this paper has assessed the feasibility of measuring a dynamic wheel/rail contact patch using an array of 64 ultrasonic elements mounted in the rail. Each element is individually pulsed in sequence to build up a linear cross sectional pressure profile measurement of the interface. These cross-sectional, line measurements are then processed and collated resulting in a 2-dimensional contact pressure profile. Measurements have been taken at different speeds and loads
An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems
New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous WIA in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little, while not much new information has been gathered on soil organisms. The impact on marine coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal classneonicotinoids and fipronil. , withContinued large scale – mostly prophylactic – use of these persistent organochlorine pesticides has the potential to greatly decreasecompletely eliminate populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates, and their deleterious impacts on growth, reproduction and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015)
Real-time non-invasive measurement and monitoring of wheel-rail contact using ultrasonic reflectometry
Rail stress levels are vital to the lifespan of rail tracks, and are responsible for the safe operation and ride comfort of train services. In particular, wheel–rail contact stress is a dominating factor affecting wear, cracking, fatigue and failure of both wheel and rail. The wheel–rail interaction problem has long been investigated, yet detailed contact information on real cases remains obscure due to the interface complexity, including the varying wheel and rail profiles and lack of effective stress characterisation methods. Ultrasound image study, as an excellent non-destructive evaluation (NDE) method, is widely used in railway systems for defect detection, stress determination and rail profile checking. Specifically, ultrasonic reflectometry has proved successful in making static machine-element contact measurements. This article introduces a novel measuring method for both short-term and long-term dynamic wheel–rail contact monitoring purposes based on ultrasonic reflectometry. The method is investigated in detail, including the study of ultrasound propagation pathways in the rail, and the optimum placement of ultrasonic elements as well as actuator–receiver combinations. The proposed monitoring technique is expected to characterise and monitor the contact behaviour of operating high-speed rail system in real-time
The results of arthroscopic anterior stabilisation of the shoulder using the bioknotless anchor system
<p>Abstract</p> <p>Background</p> <p>Shoulder instability is a common condition, particularly affecting a young, active population. Open capsulolabral repair is effective in the majority of cases, however arthroscopic techniques, particularly using suture anchors, are being used with increasing success.</p> <p>Methods</p> <p>15 patients with shoulder instability were operated on by a single surgeon (VK) using BioKnotless anchors (DePuy Mitek, Raynham, MA). The average length of follow-up was 21 months (17 to 31) with none lost to follow-up. Constant scores in both arms, patient satisfaction, activity levels and recurrence of instability was recorded.</p> <p>Results</p> <p>80% of patients were satisfied with their surgery. 1 patient suffered a further dislocation and another had recurrent symptomatic instability. The average constant score returned to 84% of that measured in the opposite (unaffected) shoulder. There were no specific post-operative complications encountered.</p> <p>Conclusion</p> <p>In terms of recurrence of symptoms, our results show success rates comparable to other methods of shoulder stabilisation. This technique is safe and surgeons familiar with shoulder arthroscopy will not encounter a steep learning curve. Shoulder function at approximately 2 years post repair was good or excellent in the majority of patients and it was observed that patient satisfaction was correlated more with return to usual activities than recurrence of symptoms.</p
Primary radiotherapy and deep inferior epigastric perforator flap reconstruction for patients with breast cancer (PRADA): a multicentre, prospective, non-randomised, feasibility study
BACKGROUND: Radiotherapy before mastectomy and autologous free-flap breast reconstruction can avoid adverse radiation effects on healthy donor tissues and delays to adjuvant radiotherapy. However, evidence for this treatment sequence is sparse. We aimed to explore the feasibility of preoperative radiotherapy followed by skin-sparing mastectomy and deep inferior epigastric perforator (DIEP) flap reconstruction in patients with breast cancer requiring mastectomy. METHODS: We conducted a prospective, non-randomised, feasibility study at two National Health Service trusts in the UK. Eligible patients were women aged older than 18 years with a laboratory diagnosis of primary breast cancer requiring mastectomy and post-mastectomy radiotherapy, who were suitable for DIEP flap reconstruction. Preoperative radiotherapy started 3-4 weeks after neoadjuvant chemotherapy and was delivered to the breast, plus regional nodes as required, at 40 Gy in 15 fractions (over 3 weeks) or 42·72 Gy in 16 fractions (over 3·2 weeks). Adverse skin radiation toxicity was assessed preoperatively using the Radiation Therapy Oncology Group toxicity grading system. Skin-sparing mastectomy and DIEP flap reconstruction were planned for 2-6 weeks after completion of preoperative radiotherapy. The primary endpoint was the proportion of open breast wounds greater than 1 cm width requiring a dressing at 4 weeks after surgery, assessed in all participants. This study is registered with ClinicalTrials.gov, NCT02771938, and is closed to recruitment. FINDINGS: Between Jan 25, 2016, and Dec 11, 2017, 33 patients were enrolled. At 4 weeks after surgery, four (12·1%, 95% CI 3·4-28·2) of 33 patients had an open breast wound greater than 1 cm. One (3%) patient had confluent moist desquamation (grade 3). There were no serious treatment-related adverse events and no treatment-related deaths. INTERPRETATION: Preoperative radiotherapy followed by skin-sparing mastectomy and immediate DIEP flap reconstruction is feasible and technically safe, with rates of breast open wounds similar to those reported with post-mastectomy radiotherapy. A randomised trial comparing preoperative radiotherapy with post-mastectomy radiotherapy is required to precisely determine and compare surgical, oncological, and breast reconstruction outcomes, including quality of life. FUNDING: Cancer Research UK, National Institute for Health Research
- …
