14 research outputs found

    Impact of amendments on the physical properties of soil under tropical long-term no till conditions

    Get PDF
    Tropical regions have been considered the world's primary agricultural frontier; however, some physico-chemical deficiencies, such as low soil organic matter content, poor soil structure, high erodibility, soil acidity, and aluminum toxicity, have affected their productive capacity. Lime and gypsum are commonly used to improve soil chemical fertility, but no information exists about the long-term effects of these products on the physical attributes and C protection mechanisms of highly weathered Oxisols. A field trial was conducted in a sandy clay loam (kaolinitic, thermic Typic Haplorthox) under a no-tillage system for 12 years. The trial consisted of four treatments: a control with no soil amendment application, the application of 2.1 Mg ha-1 phosphogypsum, the application of 2.0 Mg ha-1 lime, and the application of lime + phosphogypsum (2.0 + 2.1 Mg ha-1, respectively). Since the experiment was established in 2002, the rates have been applied three times (2002, 2004, and 2010). Surface liming effectively increased water-stable aggregates > 2.0 mm at a depth of up to 0.2 m; however, the association with phosphogypsum was considered a good strategy to improve the macroaggregate stability in subsoil layers (0.20 to 0.40 m). Consequently, both soil amendments applied together increased the mean weight diameter (MWD) and geometric mean diameter (GMD) in all soil layers, with increases of up to 118 and 89%, respectively, according to the soil layer. The formation and stabilization of larger aggregates contributed to a higher accumulation of total organic carbon (TOC) on these structures. In addition to TOC, the MWD and aggregate stability index were positively correlated with Ca2+ and Mg2+ levels and base saturation. Consequently, the increase observed in the aggregate size class resulted in a better organization of soil particles, increasing the macroporosity and reducing the soil bulk density and penetration resistance. Therefore, adequate soil chemical management plays a fundamental role in improving the soil's physical attributes in tropical areas under conservative management and highly affected by compaction caused by intensive farming

    From shallow to deep divergences:mixed messages from Amazon Basin cichlids

    No full text
    Cichlids are a conspicuous component of Amazonian ichthyofauna, filling a wide range of niches. Yet taxonomy of many groups is still poorly known in the Amazon, and most of the yet-to-be discovered species are concentrated there. We analyzed 230 individuals sampled from six major Amazonian River Basins representing 56 morpho-species, 34 nominal and 22 undescribed species in 18 cichlid genera. We used four different single-locus species-discovery (SLSD) methods, delimiting between 53 (mPTP) and 57 (GMYC) species/lineages. When detected, species/lineages are hierarchically geographically structured. Many groups such as the Geophaginae and the Cichlinae have recently diversified, and species of genera such as Cichla and Symphysodon hybridize or have a history of hybridization; thus, these species will not be detected by SLSD methods. At the same time, for example, the genera Apistogramma and Biotodoma harbor cryptic species. For all these reasons, species/lineage diversity of Amazonian cichlids is significantly underestimated. The diversity of Amazonian cichlids is particularly remarkable given that the 570 species of Neotropical cichlids, many of which are from the Amazon Basin, are found in just 1.7% of the freshwater aquatic habitat in which the ~ 2,000 species of the East African rift lake cichlids evolved.</p

    A continental-wide molecular approach unraveling mtDNA diversity and geographic distribution of the Neotropical genus Hoplias

    No full text

    Teoria e Prática Multidisciplinar em Saúde - Volume 1

    No full text

    Microstructural and Physiological Changes in Plant Cell Induced by Pressure: Their Role on the Availability and Pressure-Temperature Stability of Phytochemicals

    No full text

    Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths

    No full text
    Autoantibodies neutralizing type I IFNs increase in prevalence over 60 years of age and underlie about 20% of all fatal COVID-19 cases.</jats:p

    X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19

    No full text
    TLR7 and plasmacytoid dendritic cells are essential for type I IFN–dependent immunity to SARS-CoV-2 in the lungs.</jats:p
    corecore