69 research outputs found

    QTL analysis of high thermotolerance with superior and downgraded parental yeast strains reveals new minor QTLs and converges on novel causative alleles involved in RNA processing

    Get PDF
    Revealing QTLs with a minor effect in complex traits remains difficult. Initial strategies had limited success because of interference by major QTLs and epistasis. New strategies focused on eliminating major QTLs in subsequent mapping experiments. Since genetic analysis of superior segregants from natural diploid strains usually also reveals QTLs linked to the inferior parent, we have extended this strategy for minor QTL identification by eliminating QTLs in both parent strains and repeating the QTL mapping with pooled-segregant whole-genome sequence analysis. We first mapped multiple QTLs responsible for high thermotolerance in a natural yeast strain, MUCL28177, compared to the laboratory strain, BY4742. Using single and bulk reciprocal hemizygosity analysis we identified MKT1 and PRP42 as causative genes in QTLs linked to the superior and inferior parent, respectively. We subsequently downgraded both parents by replacing their superior allele with the inferior allele of the other parent. QTL mapping using pooled-segregant whole-genome sequence analysis with the segregants from the cross of the downgraded parents, revealed several new QTLs. We validated the two most-strongly linked new QTLs by identifying NCS2 and SMD2 as causative genes linked to the superior downgraded parent and we found an allele-specific epistatic interaction between PRP42 and SMD2. Interestingly, the related function of PRP42 and SMD2 suggests an important role for RNA processing in high thermotolerance and underscores the relevance of analyzing minor QTLs. Our results show that identification of minor QTLs involved in complex traits can be successfully accomplished by crossing parent strains that have both been downgraded for a single QTL. This novel approach has the advantage of maintaining all relevant genetic diversity as well as enough phenotypic difference between the parent strains for the trait-of-interest and thus maximizes the chances of successfully identifying additional minor QTLs that are relevant for the phenotypic difference between the original parents

    Improved linkage analysis of Quantitative Trait Loci using bulk segregants unveils a novel determinant of high ethanol tolerance in yeast

    Get PDF
    Background: Bulk segregant analysis (BSA) coupled to high throughput sequencing is a powerful method to map genomic regions related with phenotypes of interest. It relies on crossing two parents, one inferior and one superior for a trait of interest. Segregants displaying the trait of the superior parent are pooled, the DNA extracted and sequenced. Genomic regions linked to the trait of interest are identified by searching the pool for overrepresented alleles that normally originate from the superior parent. BSA data analysis is non-trivial due to sequencing, alignment and screening errors. Results: To increase the power of the BSA technology and obtain a better distinction between spuriously and truly linked regions, we developed EXPLoRA (EXtraction of over-rePresented aLleles in BSA), an algorithm for BSA data analysis that explicitly models the dependency between neighboring marker sites by exploiting the properties of linkage disequilibrium through a Hidden Markov Model (HMM). Reanalyzing a BSA dataset for high ethanol tolerance in yeast allowed reliably identifying QTLs linked to this phenotype that could not be identified with statistical significance in the original study. Experimental validation of one of the least pronounced linked regions, by identifying its causative gene VPS70, confirmed the potential of our method. Conclusions: EXPLoRA has a performance at least as good as the state-of-the-art and it is robust even at low signal to noise ratio's i.e. when the true linkage signal is diluted by sampling, screening errors or when few segregants are available

    Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering

    Get PDF
    Background: The production of bioethanol from lignocellulose hydrolysates requires a robust, D-xylose-fermenting and inhibitor-tolerant microorganism as catalyst. The purpose of the present work was to develop such a strain from a prime industrial yeast strain, Ethanol Red, used for bioethanol production. Results: An expression cassette containing 13 genes including Clostridium phytofermentans XylA, encoding D-xylose isomerase (XI), and enzymes of the pentose phosphate pathway was inserted in two copies in the genome of Ethanol Red. Subsequent EMS mutagenesis, genome shuffling and selection in D-xylose-enriched lignocellulose hydrolysate, followed by multiple rounds of evolutionary engineering in complex medium with D-xylose, gradually established efficient D-xylose fermentation. The best-performing strain, GS1.11-26, showed a maximum specific D-xylose consumption rate of 1.1 g/g DW/h in synthetic medium, with complete attenuation of 35 g/L D-xylose in about 17 h. In separate hydrolysis and fermentation of lignocellulose hydrolysates of Arundo donax (giant reed), spruce and a wheat straw/hay mixture, the maximum specific D-xylose consumption rate was 0.36, 0.23 and 1.1 g/g DW inoculum/h, and the final ethanol titer was 4.2, 3.9 and 5.8% (v/v), respectively. In simultaneous saccharification and fermentation of Arundo hydrolysate, GS1.11-26 produced 32% more ethanol than the parent strain Ethanol Red, due to efficient D-xylose utilization. The high D-xylose fermentation capacity was stable after extended growth in glucose. Cell extracts of strain GS1.11-26 displayed 17-fold higher XI activity compared to the parent strain, but overexpression of XI alone was not enough to establish D-xylose fermentation. The high D-xylose consumption rate was due to synergistic interaction between the high XI activity and one or more mutations in the genome. The GS1.11-26 had a partial respiratory defect causing a reduced aerobic growth rate. Conclusions: An industrial yeast strain for bioethanol production with lignocellulose hydrolysates has been developed in the genetic background of a strain widely used for commercial bioethanol production. The strain uses glucose and D-xylose with high consumption rates and partial cofermentation in various lignocellulose hydrolysates with very high ethanol yield. The GS1.11-26 strain shows highly promising potential for further development of an all-round robust yeast strain for efficient fermentation of various lignocellulose hydrolysates

    Intraspecies Genomic Groups in Enterococcus faecium and Their Correlation with Origin and Pathogenicity

    Get PDF
    http://aem.asm.org/Seventy-eight Enterococcus faecium strains from various sources were characterized by random amplified polymorphic DNA (RAPD)-PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) analysis of SmaI restriction patterns. Two main genomic groups (I and II) were obtained in both RAPD-PCR and AFLP analyses. DNA-DNA hybridization values between representative strains of both groups demonstrated a mean DNA-DNA reassociation level of 71%. PFGE analysis revealed high genetic strain diversity within the two genomic groups. Only group I contained strains originating from human clinical samples or strains that were vancomycin-resistant or beta-hemolytic. No differentiating phenotypic features between groups I and II were found using the rapid ID 32 STREP system. The two groups could be further subdivided into, respectively, four and three subclusters in both RAPD-PCR and AFLP analyses, and a high correlation was seen between the subclusters generated by these two methods. Subclusters of group I were to some extent correlated with origin, pathogenicity, and bacteriocinogeny of the strains. Host specificity of E. faecium strains was not confirmed

    In-situ muconic acid extraction reveals sugar consumption bottleneck in a xylose-utilizing Saccharomyces cerevisiae strain

    No full text
    Abstract Background The current shift from a fossil-resource based economy to a more sustainable, bio-based economy requires development of alternative production routes based on utilization of biomass for the many chemicals that are currently produced from petroleum. Muconic acid is an attractive platform chemical for the bio-based economy because it can be converted in chemicals with wide industrial applicability, such as adipic and terephthalic acid, and because its two double bonds offer great versatility for chemical modification. Results We have constructed a yeast cell factory converting glucose and xylose into muconic acid without formation of ethanol. We consecutively eliminated feedback inhibition in the shikimate pathway, inserted the heterologous pathway for muconic acid biosynthesis from 3-dehydroshikimate (DHS) by co-expression of DHS dehydratase from P. anserina, protocatechuic acid (PCA) decarboxylase (PCAD) from K. pneumoniae and oxygen-consuming catechol 1,2-dioxygenase (CDO) from C. albicans, eliminated ethanol production by deletion of the three PDC genes and minimized PCA production by enhancing PCAD overexpression and production of its co-factor. The yeast pitching rate was increased to lower high biomass formation caused by the compulsory aerobic conditions. Maximal titers of 4 g/L, 4.5 g/L and 3.8 g/L muconic acid were reached with glucose, xylose, and a mixture, respectively. The use of an elevated initial sugar level, resulting in muconic acid titers above 2.5 g/L, caused stuck fermentations with incomplete utilization of the sugar. Application of polypropylene glycol 4000 (PPG) as solvent for in situ product removal during the fermentation shows that this is not due to toxicity by the muconic acid produced. Conclusions This work has developed an industrial yeast strain able to produce muconic acid from glucose and also with great efficiency from xylose, without any ethanol production, minimal production of PCA and reaching the highest titers in batch fermentation reported up to now. Utilization of higher sugar levels remained conspicuously incomplete. Since this was not due to product inhibition by muconic acid or to loss of viability, an unknown, possibly metabolic bottleneck apparently arises during muconic acid fermentation with high sugar levels and blocks further sugar utilization

    Rapid Evolution of Recombinant <i>Saccharomyces cerevisiae</i> for Xylose Fermentation through Formation of Extra-chromosomal Circular DNA

    No full text
    <div><p>Circular DNA elements are involved in genome plasticity, particularly of tandem repeats. However, amplifications of DNA segments in <i>Saccharomyces cerevisiae</i> reported so far involve pre-existing repetitive sequences such as ribosomal DNA, Ty elements and Long Terminal Repeats (LTRs). Here, we report the generation of an eccDNA, (extrachromosomal circular DNA element) in a region without any repetitive sequences during an adaptive evolution experiment. We performed whole genome sequence comparison between an efficient D-xylose fermenting yeast strain developed by metabolic and evolutionary engineering, and its parent industrial strain. We found that the heterologous gene <i>XylA</i> that had been inserted close to an ARS sequence in the parent strain has been amplified about 9 fold in both alleles of the chromosomal locus of the evolved strain compared to its parent. Analysis of the amplification process during the adaptive evolution revealed formation of a <i>XylA</i>-carrying eccDNA, pXI2-6, followed by chromosomal integration in tandem arrays over the course of the evolutionary adaptation. Formation of the eccDNA occurred in the absence of any repetitive DNA elements, probably using a micro-homology sequence of 8 nucleotides flanking the amplified sequence. We isolated the pXI2-6 eccDNA from an intermediate strain of the evolutionary adaptation process, sequenced it completely and showed that it confers high xylose fermentation capacity when it is transferred to a new strain. In this way, we have provided clear evidence that gene amplification can occur through generation of eccDNA without the presence of flanking repetitive sequences and can serve as a rapid means of adaptation to selection pressure.</p></div

    Evaluation of the amplified <i>XylA</i>-locus by Southern blot analysis.

    No full text
    <p>(A) and (C) show a schematic representation of the amplified <i>XylA</i>-locus in GS1.11–26. Vertical arrows represent cutting sites of the restriction enzymes; red horizontal bar indicates the locus of the unique site for probe hybridization. The amplified locus is shown once in the upper part and twice in the lower part. (B) Image of the Southern blot analysis after <i>Hind</i>III digestion. Two bands of expected size 4.3 kb and 7.4 kb were detected in GS1.11–26 and in cultures obtained from the second step of evolutionary adaptation onwards (GS1.2 to GS1.5). The parent strain HDY.GUF5, the mutant M315 and the culture from GS1.0 and GS1.1 showed only one band representing a single copy of the locus. The negative control ER, (Ethanol Red), which does not have the gene cassette, showed no band. (D) Southern blot image after digestion with <i>Sac</i>II, that cuts only outside the amplified <i>XylA</i>-locus. Two single cell isolates from GS1.2 (GS1.2–2 and GS1.2–6) and two from GS1.4 (GS1.4–14 and GS1.4–17) were evaluated. The band of about 11kb represents a single copy of the <i>XylA</i> locus, and is present in all the tested strains except the final evolved strain GS1.11–26, which showed only a high molecular weight band. GS1.4–14 showed both the 11kb and a higher molecular weight band indicating the presence of multiple copies of the locus in one allele and a single copy in the other allele. GS1.2–6 apparently lost the circular DNA during growth in non-selective condition.</p
    corecore