47 research outputs found
The combined use of reflectance, emissivity and elevation Aster/Terra data for tropical soil studies
Fotopedologia, espectroscopia e sistema de informação geográfica na caracterização de solos desenvolvidos do Grupo Barreiras no Amapá
Avaliação espectral de solos desenvolvidos em uma toposseqüência de diabásio e folhelho da região de Piracicaba, SP
Avaliação da aptidão agrícola das terras como subsídio ao assentamento de famílias rurais, utilizando sistemas de informações geográficas
An array of low-background 3He proportional counters for the Sudbury Neutrino Observatory
An array of Neutral-Current Detectors (NCDs) has been built in order to make a unique measurement of the total active ux of solar neutrinos in the Sudbury Neutrino Observatory (SNO). Data in the third phase of the SNO experiment were collected between November 2004 and November 2006, after the NCD array was added to improve the neutral-current sensitivity of the SNO detector. This array consisted of 36 strings of proportional counters lled with a mixture of 3He and CF4 gas capable of detecting the neutrons liberated by the neutrino-deuteron neutral current reaction in the D2O, and four strings lled with a mixture of 4He and CF4 gas for background measurements. The proportional counter diameter is 5 cm. The total deployed array length was 398 m. The SNO NCD array is the lowest-radioactivity large array of proportional counters ever produced. This article describes the design, construction, deployment, and characterization of the NCD array, discusses the electronics and data acquisition system, and considers event signatures and backgrounds
Morphological Interpretation of Reflectance Spectrum (MIRS) using libraries looking towards soil classification
The search for tools to perform soil surveying faster and cheaper has led to the development of technological innovations such as remote sensing (RS) and the so-called spectral libraries in recent years. However, there are no studies which collate all the RS background to demonstrate how to use this technology for soil classification. The present study aims to describe a simple method of how to classify soils by the morphology of spectra associated with a quantitative view (400-2,500 nm). For this, we constructed three spectral libraries: (i) one for quantitative model performance; (ii) a second to function as the spectral patterns; and (iii) a third to serve as a validation stage. All samples had their chemical and granulometric attributes determined by laboratory analysis and prediction models were created based on soil spectra. The system is based on seven steps summarized as follows: i) interpretation of the spectral curve intensity; ii) observation of the general shape of curves; iii) evaluation of absorption features; iv) comparison of spectral curves between the same profile horizons; v) quantification of soil attributes by spectral library models; vi) comparison of a pre-existent spectral library with unknown profile spectra; vii) most probable soil classification. A soil cannot be classified from one spectral curve alone. The behavior between the horizons of a profile, however, was correlated with its classification. In fact, the validation showed 85 % accuracy between the Morphological Interpretation of Reflectance Spectrum (MIRS) method and the traditional classification, showing the importance and potential of a combination of descriptive and quantitative evaluations
