5,971 research outputs found

    A program of astronomical infrared spectroscopy from aircraft

    Get PDF
    Astronomical infrared spectroscopy from aircraf

    Evolution of an eruptive flare loop system

    Get PDF
    <p><b>Context:</b> Flares, eruptive prominences and coronal mass ejections are phenomena where magnetic reconnection plays an important role. However, the location and the rate of the reconnection, as well as the mechanisms of particle interaction with ambient and chromospheric plasma are still unclear.</p> <p><b>Aims:</b> In order to contribute to the comprehension of the above mentioned processes we studied the evolution of the eruptive flare loop system in an active region where a flare, a prominence eruption and a CME occurred on August 24, 2002.</p> <p><b>Methods:</b> We measured the rate of expansion of the flare loop arcade using TRACE 195 Å images and determined the rising velocity and the evolution of the low and high energy hard X-ray sources using RHESSI data. We also fitted HXR spectra and considered the radio emission at 17 and 34 GHZ.</p> <p><b>Results:</b> We observed that the top of the eruptive flare loop system initially rises with a linear behavior and then, after 120 mn from the start of the event registered by GOES at 1–8 Å, it slows down. We also observed that the heating source (low energy X-ray) rises faster than the top of the loops at 195 Å and that the high energy X-ray emission (30–40 keV) changes in time, changing from footpoint emission at the very onset of the flare to being coincident during the flare peak with the whole flare loop arcade.</p> <p><b>Conclusions:</b> The evolution of the loop system and of the X-ray sources allowed us to interpret this event in the framework of the Lin & Forbes model (2000), where the absolute rate of reconnection decreases when the current sheet is located at an altitude where the Alfvén speed decreases with height. We estimated that the lower limit for the altitude of the current sheet is km. Moreover, we interpreted the unusual variation of the high energy HXR emission as a manifestation of the non thermal coronal thick-target process which appears during the flare in a manner consistent with the inferred increase in coronal column density.</p&gt

    Mini-batch learning of exponential family finite mixture models

    Get PDF
    Mini-batch algorithms have become increasingly popular due to the requirement for solving optimization problems, based on large-scale data sets. Using an existing online expectation-{}-maximization (EM) algorithm framework, we demonstrate how mini-batch (MB) algorithms may be constructed, and propose a scheme for the stochastic stabilization of the constructed mini-batch algorithms. Theoretical results regarding the convergence of the mini-batch EM algorithms are presented. We then demonstrate how the mini-batch framework may be applied to conduct maximum likelihood (ML) estimation of mixtures of exponential family distributions, with emphasis on ML estimation for mixtures of normal distributions. Via a simulation study, we demonstrate that the mini-batch algorithm for mixtures of normal distributions can outperform the standard EM algorithm. Further evidence of the performance of the mini-batch framework is provided via an application to the famous MNIST data set

    Quantum Evaporation from Superfluid Helium at Normal Incidence

    Full text link
    We study the scattering of atoms, rotons and phonons at the free surface of 4^4He at normal incidence and calculate the evaporation, condensation and reflection probabilities. Assuming elastic one-to-one processes and using general properties of the scattering matrix, such as unitarity and time reversal, we argue that all nonzero probabilities can be written in terms of a single energy-dependent parameter. Quantitative predictions are obtained using linearized time dependent density functional theory.Comment: 12 pages, REVTeX, 2 postscript figures, available also at http://anubis.science.unitn.it/~dalfovo/papers/papers.htm

    Book Reviews

    Get PDF

    Ascertaining the Impact of P–12 Engineering Education Initiatives: Student Impact through Teacher Impact

    Get PDF
    The widespread need to address both science, technology, engineering, and math (STEM) education and STEM workforce development is persistent. Underscored by the Next Generation Science Standards, demand is high for P–12 engineering-centered curricula. TeachEngineering is a free, standards-aligned NSF-funded digital library of more than 1,500 hands-on, design-rich K–12 engineering lessons and activities. Beyond anonymous site-user counts, the impact of the TeachEngineering collection and outreach initiatives on the education of children and their teachers was previously unknown. Thus, the project team wrestled with the question of how to meaningfully ascertain classroom impacts of the digital engineering education library and—more broadly—how to ascertain the impacts of teacher-focused P–12 engineering education initiatives. In this paper, the authors approach the classroom impact question through probing self-reported differentials in: (1) teachers’ confidence in teaching engineering concepts, and (2) changes in their teaching practices as a result of exposure to (and experiences with) K–12 engineering education resources and outreach opportunities. In 2016, four quantitative and qualitative surveys were implemented to probe the impact of the TeachEngineering digital library and outreach on four populations of K–12 teachers’ confidence and practices, including the frequency with which they integrate engineering into their precollege classrooms. Survey results document the teacher experience and perception of using hands-on K–12 engineering curricular materials in the classroom and help create a data-driven understanding of where to best invest future resources. The results suggest that the TeachEngineering curricular resources and outreach initiatives help teachers build confidence in their use of engineering curriculum and pedagogy in K–12 classrooms, impact their teaching practices, and increase their likelihood of teaching engineering in the classroom in the future

    Structural and magnetic properties of E-Fe_{1-x}Co_xSi thin films deposited via pulsed laser deposition

    Get PDF
    We report pulsed laser deposition synthesis and characterization of polycrystalline Fe1-xCox Si thin films on Si (111). X-ray diffraction, transmission electron, and atomic force microscopies reveal films to be dense, very smooth, and single phase with a cubic B20 crystal structure. Ferromagnetism with significant magnetic hysteresis is found for all films including nominally pure FeSi films in contrast to the very weak paramagnetism of bulk FeSi. For Fe1-xCoxSi this signifies a change from helimagnetism in bulk, to ferromagnetism in thin films. These ferromagnetic thin films are promising as a magnetic-silicide/silicon system for polarized current production, manipulation, and detection.Comment: 12 pages, 4 figures accepted in the Applied Physics Letter

    Extended Parental Care in Communal Social Groups

    Get PDF
    Recent developments in social insect research have challenged the need for close kinship as a prerequisite for the evolution of stable group living. In a model communal bee species, Lasioglossum (Chilalictus) hemichalceum, previous allozyme work indicated that groups of cooperating adult females are not relatives. Yet at any given time, not all group members perform the risky task of foraging. We previously hypothesized that tolerance for non-foragers was a component of extended parental care, previously known only for kin based social systems. DNA microsatellites were used to study colony genetic structure in order to test this hypothesis. Microsatellite polymorphism was substantial (He = 0.775). Overall intracolony relatedness, mainly of immatures, was low but significant in nine, late season nests (r = 0.136 ± 0.023), indicating that broods contain five to six unrelated sib ships. Detailed analyses of kinship between pairs of individuals revealed that most pairs were unrelated and most related pairs were siblings. Mothers are absent for 89–91% of the developing immature females, and 97% of developing males. Alternatively, 46% of adult females had neither sibs nor offspring in their nests. These findings indicate that the extended parental care model applies broadly to both kin based and nonkin based social systems in the Hymenoptera
    corecore