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Abstract

Mini-batch algorithms have become increasingly popular due to the requirement for solving

optimization problems, based on large-scale data sets. Using an existing online expectation--

maximization (EM) algorithm framework, we demonstrate how mini-batch (MB) algorithms

may be constructed, and propose a scheme for the stochastic stabilization of the constructed

mini-batch algorithms. Theoretical results regarding the convergence of the mini-batch EM

algorithms are presented. We then demonstrate how the mini-batch framework may be applied
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to conduct maximum likelihood (ML) estimation of mixtures of exponential family distribu-

tions, with emphasis on ML estimation for mixtures of normal distributions. Via a simulation

study, we demonstrate that the mini-batch algorithm for mixtures of normal distributions

can outperform the standard EM algorithm. Further evidence of the performance of the

mini-batch framework is provided via an application to the famous MNIST data set.

Key words: expectation--maximization algorithm, exponential family distributions, finite mix-

ture models, mini-batch algorithm, normal mixture models, online algorithm

1 Introduction

The exponential family of distributions is an important class of probabilistic models with numerous

applications in statistics and machine learning. The exponential family contains many of the most

commonly used univariate distributions, including the Bernoulli, binomial, gamma, geometric,

inverse Gaussian, logarithmic normal, Poisson, and Rayleigh distributions, as well as multivariate

distributions such as the Dirichlet, multinomial, multivariate normal, von Mises, and Wishart

distributions. See Forbes et al. (2011, Ch. 18), DasGupta (2011, Ch. 18), and Amari (2016, Ch.

2).

Let Y > = (Y1, . . . , Yd) be a random variable (with realization y) on the support Y ⊆ Rd

(d ∈ N) , arising from a data generating process (DGP) with probability density/mass function

(PDF/PMF) f (y;θ) that is characterized by some parameter vector θ ∈ Θ ⊆ Rp (p ∈ N). We

say that the distribution that characterizes the DGP of Y is in the exponential family class, if the

PDF/PMF can be written in the form
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f (y;θ) = h (y) exp
{

[s (y)]>φ (θ)− ψ (θ)
}
, (1)

where s (·) and φ (·) are p-dimensional vector functions, and h (·) and ψ (·) are 1-dimensional

functions of y and θ, respectively. If the dimensionality of s (·) and φ (·) is less than p, then we

say that the distribution that characterizes the DGP of Y is in the curved exponential class.

Let Z ∈ [g] ([g] = {1, . . . , g}; g ∈ N) be a latent random variable, and write X> =
(
Y >, Z

)
.

Suppose that the PDF/PMF of {Y = y|Z = z} can be written as f (y;ωz), for each z ∈ [g]. If

we assume that P (Z = z) = πz > 0, such that
∑g

z=1 πz = 1, then we can write the marginal

PDF/PMF of Y in the form

f (y;θ) =

g∑
z=1

πzf (y;ωz) , (2)

where we put the unique elements of πz and ωz into θ. We call f (y;θ) the g-component finite

mixture PDF, and we call f (y;ωz) the zth component PDF, characterized by the parameter vector

ωz ∈ Ω, where Ω is some subset of a real product space. We also say that the elements πz are

prior probabilities, corresponding to the respective component.

The most common finite mixtures models are mixtures of normal distributions, which were

popularization by Pearson (1894), and have been prolifically used by numerous prior authors (cf.

McLachlan et al., 2019). The g-component d-dimensional normal mixture model has PDF of the

form

f (y;θ) =

g∑
z=1

πzϕ (y;µz,Σz) , (3)

where the normal PDFs
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ϕ (y;µz,Σz) = |2πΣz|−1/2 exp

[
−1

2
(y − µz)>Σ−1

z (y − µz)
]
, (4)

replace the component densities f (y;ωz), in (2). Each component PDF (4) is parameterized by

a mean vector µz ∈ Rd and a positive-definite symmetric covariance matrix Σz ∈ Rd×d. We then

put each πz, µz, and Σz into the vector θ.

As earlier noted, the normal distribution is a member of the exponential family, and thus (4)

can be written in form (1). This can be observed by putting the unique elements of µz and Σz

into ωz, and writing ϕ (y;µz,Σz) = f (y;ωz) in form (1), with mappings

h (y) = (2π)−d/2 , s (y) =

 y

vec(yy>)

 , φ (ωz) =

 Σ−1
z µz

−1
2
vec(Σ−1

z )

 , and (5)

ψ (ωz) =
1

2
µ>z Σ−1

z µz +
1

2
log |Σz| . (6)

When conducting data analysis using a normal mixture model, one generally observes an in-

dependent and identically (IID) sequence of n ∈ N observations {Yi}ni=1, arising from a DGP that

is hypothesized to be characterized by a PDF of the form (3), with unknown parameter vector

θ = θ0. The inferential task is to estimate θ0 via some estimator that is computed from {Yi}ni=1.

The most common computational approach to obtaining an estimator of θ0 is via maximum like-

lihood (ML) estimation, using the expectation--maximization algorithm (EM; Dempster et al.,

1977). See McLachlan & Peel (2000, Ch. 3.2) for a description of the normal mixture EM algo-

rithm. Generally, when g, d, and n are of small to moderate size, the conventional EM approach

is feasible, and is able to perform the task of ML estimation in a timely manner. Unfortunately,

due to its high memory demands, costly matrix operations (Nguyen & McLachlan, 2015), and slow
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convergence rates (McLachlan & Krishnan, 2008, Sec. 3.9), the conventional EM algorithm is not

suited for the computational demands of analyzing increasingly large data sets, such as those that

could be considered as big data in volumes such as Buhlmann et al. (2016), Han et al. (2017), and

Hardle et al. (2018).

Over the years, numerous algorithms have been proposed as means to alleviate the compu-

tational demands of the EM algorithm for normal mixture models. Some of such approaches

include the component-wise algorithm of Celeux et al. (2001), the greedy algorithm of Vlassis &

Likas (2002), the sparse and incremental kd-tree algorithm of Ng & McLachlan (2004), the sub-

space projection algorithm of Bouveyron et al. (2007), and the matrix operations-free algorithm

of Nguyen & McLachlan (2015).

There has been a recent resurgence in stochastic approximation algorithms, of the Robbins &

Monro (1951) and Kiefer & Wolfowitz (1952) type, developed for the purpose of solving computa-

tionally challenging optimization problems, such as the ML estimation of normal mixture models.

A good review of the current literature can be found in Chau & Fu (2015). NaÃ¯ve and direct

applications of the stochastic approximation approach to mixture model estimation can be found

in Liang & Zhang (2008), Zhang & Liang (2008), and Nguyen & Jones (2018).

Following a remark from Cappé & Moulines (2009) regarding the possible extensions of the

online EM algorithm, we propose mini-batch EM algorithms for the ML estimation of exponential

family mixture models. These algorithms include a number of variants, among which are update

truncation variants that had not been made explicit, before. Using the theorems from Cappé &

Moulines (2009), we state results regarding the convergence of our algorithms. We then specialize

our attention to the important case of normal mixture models, and demonstrate that the required

assumptions for convergence are met in such a scenario.
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A thorough numerical study is conducted in order to assess the performance of our normal

mixture mini-batch algorithms. Comparisons are drawn between our algorithms and the usual

batch EM algorithm for ML estimation of normal mixture models. We show that our mini-batch

algorithms can be applied to very large data sets by demonstrating its applicability to the ML

estimation of normal mixture models on the famous MNIST data of LeCun et al. (1998).

References regarding mixtures of exponential family distributions and EM-type stochastic ap-

proximation algorithms, and comments regarding some recent related literature are relegated to

the Supplementary Materials, in the interest of brevity. Additional remarks, numerical results,

and derivations are also included in these Supplementary Materials in order to provide extra con-

text and further demonstrate the capabilities of the described framework. These demonstrations

include the derivation of mini-batch EM algorithms for mixtures of exponential and Poisson distri-

butions. The Supplementary Materials can be found at https://github.com/hiendn/StoEMMIX/

blob/master/Manuscript_files/SupplementaryMaterials.pdf.

The remainder of the paper is organized as follows. In Section 2, we present the general results

of Cappé & Moulines (2009) and demonstrate how they can be used for mini-batch ML estimation

of exponential family mixture models. In Section 3, we derive the mini-batch EM algorithms for

the ML estimation of normal mixtures, as well as verify the convergence of the algorithms using

the results of Cappé & Moulines (2009). Via numerical simulations, we compare the performance

of our mini-batch algorithms to the usual EM algorithm for ML estimation of normal mixture

models, in Section 4. A set of real data study on a very large data set is presented in Section 5.

Conclusions are drawn in Section 6. Additional material, such as mini-batch EM algorithms for

exponential and Poisson mixture models, can be found in the Supplementary Materials.
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2 The mini-batch EM algorithm

Suppose that we observe a single pair of random variables X> =
(
Y >,Z>

)
, where Y ∈ Y

is observed but Z ∈ L is latent, where Y and L are subsets of multivariate real-valued spaces.

Furthermore, suppose that the marginal PDF/PMF of Y is hypothesized to be of the form f (y;θ0),

for some unknown parameter vector θ0 ∈ Θ ⊆ Rp. A good estimator for θ0 is the ML estimator θ̂

that can be defined as:

θ̂ ∈
{
θ̂ : log f

(
Y ; θ̂

)
= max

θ∈Θ
log f (Y ;θ)

}
. (7)

When the problem (7) cannot be solved in a simple manner (e.g. when the solution does

not exist in closed form), one may seek to employ an iterative scheme in order to obtain an ML

estimator. If the joint PDF/PMF of X is known, then one can often construct an EM algorithm

in order to solve the problem in the bracket of (7).

Start with some initial guess for θ0 and call it the zeroth iterate of the EM algorithm θ(0) and

suppose that we can write the point PDF/PMF of X as f (y, z;θ), for any θ. At the rth iterate

of the EM algorithm, we perform an expectation (E-) step, followed by a maximization (M-) step.

The rth E-step consists of obtaining the conditional expectation of the complete-data log-likelihood

(i.e. log f (y, z;θ)) given the observed data, using the current estimate of the parameter vector

Q
(
θ;θ(r−1)

)
= Eθ(r−1) [log f (y,Z;θ) |Y = y] ,

which we will call the conditional expected complete-data log-likelihood.

Upon obtaining the conditional expectation of the complete-data log-likelihood, one then con-
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ducts the rth M-step by solving the problem

θ(r) = arg max
θ∈Θ

Q
(
θ;θ(r−1)

)
.

The E- and M-steps are repeated until some stopping criterion is met. Upon termination, the final

iterate of the algorithm is taken as a solution for problem (7). See McLachlan & Krishnan (2008)

for a thorough exposition regarding the EM algorithm.

2.1 The online EM algorithm

Suppose that we observe a sequence of n IID replicates of the variable Y , {Yi}ni=1, where each Yi

is the visible component of the pair Xi =
(
Y >i ,Z

>
i

)
(i ∈ [n]). In the online learning context, each

of the observations from {Yi}ni=1 is observed one at a time, in sequential order.

Using the sequentially obtained sequence {Yi}ni=1, we wish to obtain an ML estimator for the

parameter vector θ0, in the same sense as in (7). In order to construct an online EM algorithm

framework with provable convergence, Cappé & Moulines (2009) assume the following restrictions

regarding the nature of the hypothesized DGP of {Yi}ni=1.

A1 The complete-data likelihood corresponding to the pair X is of exponential family

form. That is,

f (x;θ) = h (x) exp
{

[s (x)]>φ (θ)− ψ (θ)
}
, (8)

where h (·), ψ (·), s (·), and φ (·) are as defined for (1).

A2 The function

s̄ (y;θ) = Eθ [s (X) |Y = y] (9)
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is well defined for all y ∈ Y and θ ∈ Θ.

A3 There exists a convex open subset S ⊆ Rp, which satisfies the properties that:

(i) for all s ∈ S, y ∈ Y, θ ∈ Θ, (1− γ) s+γs̄ (y;θ) ∈ S for any γ ∈ (0, 1), and

(ii) for any s ∈ S, the function

q (s;θ) = s>φ (θ)− ψ (θ)

has a unique global maximum over Θ, which will be denoted by

θ̄ (s) = arg max
θ∈Θ

q (s;θ) .

Let Qn

(
θ;θ(r−1)

)
be the expected complete-data log-likelihood over data {Yi}ni=1, at the rth E-step

of an EM algorithm for solving the problem:

θ̂n ∈

{
θ̂ : n−1

n∑
i=1

log f
(
Yi; θ̂

)
= max

θ∈Θ
n−1

n∑
i=1

log f (Yi;θ)

}
,

where we say that θ̂n is the ML estimator, based on the data {Yi}ni=1. When, A1–A3 are satisfied,

we can write

Qn

(
θ;θ(r−1)

)
= nq

(
n−1

n∑
i=1

s̄
(
Yi;θ

(r−1)
)

;θ

)
+ Constant,

which can then be maximized, with respect to θ, in order to yield an M-step update of the form:

θ(r) = θ̄

(
n−1

n∑
i=1

s̄
(
Yi;θ

(r−1)
))

, (10)
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where θ(r) is a function that depends only on the average n−1
∑n

i=1 s̄
(
Yi;θ

(r−1)
)
.

Now we suppose that we sample the individual observations of {Yi}ni=1, one at a time and

sequentially. Furthermore, upon observation of Yi, we wish to compute an online estimate of

θ0, which we denote as θ(i). Based on the simplification of the EM algorithm under A1–A3, as

described above, Cappé & Moulines (2009) proposed the following online EM algorithm.

Upon observation of Yi, compute the intermediate updated sufficient statistic

s(i) = s(i−1) + γi
[
s̄
(
Yi;θ

(i−1)
)
− s(i−1)

]
, (11)

with s(0) = s̄
(
Yi;θ

(0)
)
. Here, γi is the ith term of the learning rate sequence that we will discuss

in further details in the sequel. Observe that we can also write

s(i) = γis̄
(
Yi;θ

(i−1)
)

+ (1− γi) s(i−1),

which makes it clear that for γi ∈ (0, 1), s(i) is a weighted average between s̄
(
Yi;θ

(i−1)
)
and s(i−1).

Using s(i) and the function θ̄, we can then express the ith iteration online EM estimate of θ0 as

θ(i) = θ̄
(
s(i)
)
. (12)

Next, we state a consistency theorem that strongly motivates the use of the online EM algo-

rithm, defined by (11) and (12). Suppose that the true DGP that generates each Yi of {Yi}ni=1 is

characterized by the probability measure F0. Write the expectation operator with respect to this

measure as EF0 . In order to state the consistency result of Cappé & Moulines (2009), we require

the following additional set of assumptions.
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B1 The parameter space Θ is a convex and open subset of a real product space, and the

functions φ and ψ, in (8), are both twice continuously differentiable with respect to

θ ∈ Θ.

B2 The function θ̄, as defined in (10), is a continuously differentiable function with respect

to s ∈ S, where S is as defined in A3.

B3 For some p > 2, and all compact K ⊂ S,

sup
s∈K

EF0

[∣∣s̄ (Y ; θ̄ (s)
)∣∣p] <∞. (13)

As the algorithm defined by (11) and (12) is of the Robbins-Monro type, establishment of con-

vergence of the algorithm requires the definition of a mean field (see Chen, 2003 and Kushner &

Yin, 2003 for comprehensive treatments regarding such algorithms). In the case of the online EM

algorithm, we write the mean field as

h (s) = EF0

[
s̄
(
Y ; θ̄ (s)

)]
− s

and define the set of its roots as Γ = {s ∈ S : h (s) = 0}.

Define the log-likelihood of the hypothesized PDF f (·;θ) with respect to the measure F0, as

` (f (·;θ)) = EF0 [log f (Y ;θ)] .

Let ∇θ denote the gradient with respect to θ, and define the sets

WΓ =
{
` (f (·;θ)) : θ = θ̄ (s) , s ∈ Γ

}
11



and

MΘ =
{
θ̂ ∈ Θ : ∇θ ` (f (·;θ))|θ=θ̂ = 0

}
.

Note that MΘ is the set of stationary points of the log-likelihood function. Further, define the

distance between a real vector a and a set B by

dist (a,B) = inf
b∈B
‖a− b‖ ,

where ‖·‖ is the usual Euclidean metric, and denote the complement of a subset A of a real product

space by Ac. Finally, make the following assumptions.

C1 The sequence of learning rates {γi}∞i=1 fulfills the conditions that 0 < γi < 1, for each

i,
∞∑
i=1

γi =∞, and
∞∑
i=1

γ2
i <∞.

C2 At initialization s(0) ∈ S and, with probability 1,

lim sup
i→∞

∣∣s(i)
∣∣ <∞, and lim inf

i→∞
dist

(
s(i),Sc

)
= 0.

C3 The set WΓ is nowhere dense.

Theorem 1 (Cappe and Moulines, 2009). Assume that A1–A3, B1–B3, and C1–C3 are satisfied,

and let {Yi}∞i=1 be an IID sample with DGP characterized by the PDF f0, which is hypothesized to

have the form f (·;θ), as in (8). Further, let
{
s(i)
}∞
i=1

and
{
θ(i)
}∞
i=1

be sequences generated by the
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online EM algorithm, defined by (11) and (12). Then, with probability 1,

lim
i→∞

dist
(
s(i),Γ

)
= 0, and lim

i→∞
dist

(
θ(i),MΘ

)
= 0.

Notice that this result allows for a mismatch between the true probability measure F0 and the

assumed pseudo-true family f (·;θ) from which {Yi}∞i=1 is hypothesized to arise. This therefore

allows for misspecification, in the sense of White (1982), which is almost certain to occur in the

modeling of any sufficiently complex data. In any case, the online EM algorithm will converge

towards an estimate of the parameter vector θ, which is in the set MΘ. When the DGP can be

characterized by a density in the family of the form f (·;θ), we observe that MΘ contains not

only the global maximizer of the log-likelihood function, but also local maximizers, minimizers,

and saddle points. Thus, the online algorithm suffers from the same lack of strong convergence

guarantees, as the batch EM algorithm (cf. Wu, 1983).

In the case of misspecification the set MΘ will include the parameter vector θ0 that maximizes

the log-likelihood function, with respect to the true probability measure F0. However, as with

the well-specified case, it will also include stationary points of other types, as well. We further

provide characterizations of the sets WΓ and MΘ in terms of the Kullback-Leibler divergence (KL;

Kullback & Leibler, 1951) in the Supplementary Materials.

Assumption C1 can be fulfilled by taking sequences {γi}∞i=1 of form γi = γ0i
α, for some α ∈ (0, 1]

and γ0 ∈ (0, 1). We shall discuss this point further, in the sequel. Although the majority of the

assumptions can be verified or are fulfilled by construction, the two limits in C2 stand out as being

particularly difficult to verify. In Cappé & Moulines (2009), the authors suggest that one method

for enforcing C2 is to use the method of update truncation, but they did not provide an explicit

scheme for conducting such truncation.
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A truncation version of the algorithm defined by (11) and (12) can be specified via the method

of Delyon et al. (1999). That is, let {Km}∞m=0 be a sequence of compact sets, such that

Km ⊂ interior (Km+1) , and
∞⋃
m=0

Km = S. (14)

We then replace (11) and (12) by the following scheme. At the ith iteration, firstly compute

s̃(i) = s(i−1) + γi
[
s̄
(
Yi;θ

(i−1)
)
− s(i−1)

]
. (15)

Secondly,

if s̃(i) ∈ Kmi−1
, then set s(i) = s̃(i), θ(i) = θ̄

(
s(i)
)
, and mi = mi−1, (16)

else

if s̃(i) /∈ Kmi−1
, then set s(i) = Si, θ(i) = θ̄ (Si) , and mi = mi−1 + 1, (17)

where {Si}∞i=1 is an arbitrary random sequence, such that Si ∈ K0, for each i ∈ N. We have the

following result regarding the algorithm defined by (15)–(17).

Proposition 1. Assume that A1–A3, B1–B3, C1 and C3 are satisfied, and let {Yi}∞i=1 be an IID

sample with DGP characterized by the PDF f0, which is hypothesized to have the form f (·;θ),

as in (8). Further, let
{
s(i)
}∞
i=1

and
{
θ(i)
}∞
i=1

be sequences generated by the truncated online EM

algorithm, defined by (15)–(17). Then, with probability 1,

lim
i→∞

dist
(
s(i),Γ

)
= 0, and lim

i→∞
dist

(
θ(i),MΘ

)
= 0.

The proof of Proposition 1 requires the establishment of equivalence between A1–A3, B1–B3,
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C1, and C3, and the many assumptions of Theorem 3 and 6 of Delyon et al. (1999). Thus the

proof is simple and mechanical, but long and tedious. We omit it for the sake of brevity.

2.2 The mini-batch algorithm

At the most elementary level, a mini-batch algorithm for computation of a sequence of estimators{
θ(r)
}R
r=1

for some parameter θ0, from some sample {Yi}ni=1, where R ∈ N, has the following

property. The algorithm is iterative, and at the rth iteration of the algorithm, the estimator θ(r)

only depends on the previous iterate θ(r−1) and some subsample, possibly with replacement, of

{Yi}ni=1. Typical examples of mini-batch algorithms include the many variants of the stochastic

gradient descent-class of algorithms; see, for example, Cotter et al. (2011), Li et al. (2014), Zhao

et al. (2014), and Ghadimi et al. (2016).

Suppose that we observe a fixed size realization {yi}ni=1 of some IID random sample {Y }ni=1.

Furthermore, fix a so-called batch size N ≤ n and a learning rate sequence {γr}Rr=1, and select

some appropriate initial values s(0) and θ(0) from which the sequences
{
s(r)
}R
r=1

and
{
θ(r)
}R
r=1

can

be constructed. A mini-batch version of the online EM algorithm, specified by (11) and (12) can

be specified as follows. For each r ∈ [R], sample N observations from {yi}ni=1 uniformly, with

replacement, and denote the subsample by {Y r
i }

N
i=1. Then, using {Y r

i }
N
i=1, compute

s(r) = s(r−1) + γr

[
N−1

N∑
i=1

s̄
(
Y r
i ;θ(r−1)

)
− s(r−1)

]
, and θ(r) = θ̄

(
s(r)
)
. (18)

In order to justify the mini-batch algorithm, we make the following observation. The online

EM algorithm, defined by (11) and (12), is designed to obtain a root in the set MΘ, which is a

vector θ̂ ∈ Θ such that

∇θ ` (f (·;θ))|θ=θ̂ = 0.
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IfN = 1 (i.e., the case proposed in Cappé & Moulines, 2009, Sec. 2.5), then the DGP for generating

subsamples is simply a single draw from the empirical measure:

FEmp (y) =
n∑
i=1

1

n
δ (y − yi) ,

where δ is the Dirac delta function (see, for details, Prosperetti, 2011, Ch. 2). We can write

` (f (·;θ)) = EF0 [log f (Y ;θ)]

= EFEmp [log f (Y ;θ)]

=
1

n

n∑
i=1

log f (yi;θ) , (19)

which is the log-likelihood function, with respect to the realization {yi}ni=1, under the density

function of form f (·;θ). Thus, in the N = 1 case, the algorithm defined by (18) solves for

log-likelihood roots θ̂ of the form

1

n

n∑
i=1

∇θ log f (yi;θ)|θ=θ̂ = 0,

or equivalently, solving for an element in the set

MEmp
Θ =

{
θ̂ ∈ Θ :

n∑
i=1

∇θ log f (yi;θ)|θ=θ̂ = 0

}
.

The N > 1 case follows the same argument, and is described in the Supplementary Materials (Sec-

tion 2.2). Let FN
Emp denote the probability measure corresponding to the DGP of N independent

random samples from FEmp. We have the following result, based on Theorem 1.
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Corollary 1. For any N ∈ N, assume that A1–A3, B1–B3, and C1–C3 are satisfied (replacing i by

r, and F0 by FN
Emp, where appropriate), and let {yi}ni=1 be a realization of some IID random sequence

{Yi}ni=1, where each Yi is hypothesized to arise from a DGP having PDF of the form f (·;θ), as in

(8). Let
{
s(r)
}∞
i=1

and
{
θ(r)
}∞
i=1

be sequences generated by the mini-batch EM algorithm, defined

by (11) and (12). Then, with probability 1,

lim
r→∞

dist
(
s(r),Γ

)
= 0, and lim

r→∞
dist

(
θ(r),MEmp

Θ

)
= 0.

That is, as we take R → ∞, the algorithm defined by (11) and (12) will identify elements in

the sets Γ and MEmp
Θ , with probability 1. As with the case of Theorem 1, C2 is again difficult

to verify. Let {Km}∞m=0 be as per (14). Then, we replace the algorithm defined via (18), by the

following truncated version.

Again, suppose that we observe a fixed size realization {yi}ni=1 of some IID random sample

{Y }ni=1. Furthermore, fix a so-called batch size N ≤ n and a learning rate sequence {γr}Rr=1,

and select some appropriate initial values s(0) and θ(0) from which the sequences
{
s(r)
}R
r=1

and{
θ(r)
}R
r=1

can be constructed. For each r ∈ [R], sample N observations from {yi}ni=1 uniformly,

with replacement, and denote the subsample by {Y r
i }

N
i=1. Using {Y r

i }
N
i=1, compute

s̃(r) = s(r−1) + γr

[
N−1

N∑
i=1

s̄
(
Y r
i ;θ(r−1)

)
− s(r−1)

]
. (20)

Then, with i being appropriately replaced by r, use (16) and (17) to compute s(r) and θ(r). We

obtain the following result via an application of Proposition 1.

Corollary 2. For any N ∈ N, assume that A1–A3, B1–B3, and C1–C3 are satisfied (replacing

i by r, and F0 by FN
Emp, where appropriate), and let {yi}ni=1 be a realization of some IID random
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sequence {Yi}ni=1, where each Yi is hypothesized to arise from a DGP having PDF of the form

f (·;θ), as in (8). Let
{
s(r)
}∞
i=1

and
{
θ(r)
}∞
i=1

be sequences generated by the truncated mini-batch

EM algorithm, defined by (20), (16), and (17). Then, with probability 1,

lim
r→∞

dist
(
s(r),Γ

)
= 0, and lim

r→∞
dist

(
θ(r),MEmp

Θ

)
= 0.

2.3 The learning rate sequence

As previously stated, a good choice for the learning rate sequence {γi}∞i=1 is to take γi = γ0i
α, for

each i ∈ N, such that α ∈ (1/2, 1] and γ0 ∈ (0, 1). Under the assumptions of Theorem 1, Cappé

& Moulines (2009, Thm. 2) showed that the learning rate choice leads to the convergence of the

sequence γ1/2
0 iα/2

(
θ(i) − θ0

)
, in distribution, to a normal distribution with mean 0 and covariance

matrix depending on θ0, for some θ0 ∈ MΘ. Here
{
θ(i)
}∞
i=1

is a sequence of online EM algorithm

iterates, generated by (11) and (12). A similar result can be stated for the truncated online EM,

mini-batch EM, and truncated mini-batch EM algorithms, by replacing the relevant indices and

quantities in the previous statements by their respective counterparts.

The result above implies that the convergence rate is θ(i) − θ0 = op
(
iα/2
)
, for any valid α,

where op is the usual order in probability notation (see White, 2001, Defn. 2.33). Thus, it would

be tempting to take α = 1 in order to obtain a rate with optimal order of n1/2. However, as shown

in Cappé & Moulines (2009, Thm. 2), the α = 1 case requires constraints on γ0 in order to fulfill

a stability assumption that is impossible to validate, in practice.

It is, however, still possible to obtain a sequence of estimators that converges to some θ0 at a

rate with optimal order n1/2. We can do this via the famous so-called Polyak averaging scheme

of Polyak (1990) and Polyak & Juditsky (1992). In the current context, one takes as an input
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the sequence of online EM iterates
{
θ(i)
}∞
i=1

, and output the running average sequence
{
θ

(i)
A

}∞
i=1

,

where

θ
(i)
A = i−1

i∑
j=1

θ(j), (21)

for each i ∈ N. For any α ∈ (1/2, 1), it is provable that θ(i)
A −θ0 = op

(
n1/2

)
. As before, this result

generalizes to the cases of the truncated online EM, mini-batch EM, and truncated mini-batch EM

algorithms, also.

We note that the computation of the ith running average term (21) does not require the storage

of the entire sequence of iterates
{
θ(i)
}∞
i=1

, as one would anticipate by applying (21) naÃ¯vely.

One can instead write (21) in the iterative form

θ
(i)
A = i−1

[
(i− 1)θ

(i−1)
A + θ(i)

]
.

3 Normal mixture models

3.1 Finite mixtures of exponential family distributions

We recall from Section 1, that the random variable Y is said to arise from a DGP characterized

by a g component finite mixture of component PDFs of form f (y;ωz), if it has a PDF of the form

(2). Furthermore, if the component PDFs are of the exponential family form (1), then we further

write the PDF of Y as

f (y;θ) =

g∑
z=1

πzh (y) exp
{

[s (y)]>φ (ωz)− ψ (ωz)
}
. (22)

From the construction of the finite mixture model, we have the fact that (22) is the marginal-
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ization of the joint density of the random variable X> =
(
Y >, Z

)
:

f (x;θ) =

g∏
ζ=1

[
πζh (y) exp

{
[s (y)]>φ (ωζ)− ψ (ωζ)

}]Jz=ζK
(23)

over the random variable Z ∈ [g], recalling that Z is a categorical random variable with g categories

(cf. McLachlan & Peel, 2000, Ch. 2). Here, JcK is the Iverson bracket notation, that takes value 1

if condition c is true, and 0 otherwise (Iverson, 1967, Ch. 1). We rewrite (23) as follows:

f (x;θ) = h (y) exp

{
g∑
ζ=1

Jz = ζK
[
log πζ + [s (y)]>φ (ωζ)− ψ (ωζ)

]}

= h (x) exp
{

[s (x)]>φ (θ)− ψ (θ)
}
,

where h (x) = h (y), ψ (θ) = 0,

s (x) =



Jz = 1K

Jz = 1K s (y)

...

Jz = gK

Jz = gK s (y)


, and φ (θ) =



log π1 − ψ (ω1)

φ (ω1)

...

log πg − ψ (ωg)

φ (ωg)


,

and thus obtain the following general result regarding finite mixtures of exponential family distri-

butions.

Proposition 2. The complete-data likelihood of any finite mixture of exponential family distribu-

tions with PDF of the form (22) can also be written in the exponential family form (8).
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With Proposition 2, we have proved that when applying the online EM or the mini-batch EM

algorithm to the problem of conducting ML estimation for any finite mixture model of exponential

family distributions, A1 is automatically satisfied.

3.2 Finite mixtures of normal distributions

Recall from Section 1 that the random variable Y is said to be distributed according to a

g-component finite mixture of normal distributions, if it characterized by a PDF of the form

(3). Using the exponential family decomposition from (5) and (6), we write the complete-data

likelihood of X> =
(
Y >, Z

)
in the form (8) by setting h (x) = (2π)−d/2, ψ (θ) = 0,

s (x) =



Jz = 1K

Jz = 1Ky

Jz = 1K vec(yy>)

...

Jz = gK

Jz = gKy

Jz = gK vec(yy>)



, and φ (θ) =



log π1 − 1
2
µ>1 Σ−1

1 µ1 + 1
2

log |Σ1|

Σ−1
1 µ1

−1
2
vec(Σ−1

1 )

...

log πg − 1
2
µ>g Σ−1

g µg + 1
2

log |Σg|

Σ−1
g µg

−1
2
vec(Σ−1

g )



, (24)

where vec(·) is the matrix vectorization operator.

Using the results from McLachlan & Peel (2000, Ch. 3), we write the conditional expectation

(9) in the form

[s̄ (y;θ)]> =
(
τ1 (y;θ) , τ1 (y;θ)y, τ1 (y;θ) vec(yy>), . . . , τg (y;θ) , τg (y;θ)y, τg (y;θ) vec(yy>

)
),
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where

τz (y;θ) =
πzϕ (y;µz,Σz)∑g
ζ=1 πζϕ (y;µζ ,Σζ)

,

is the usual a posteriori probability that Z = z (z ∈ [g]), given observation of Y = y. Again, via

the results from McLachlan & Peel (2000, Ch. 3), we write the update function θ̄ in the following

form. Define θ̄ to have the elements π̄z and ω̄z, for each z ∈ [g], where each ω̄z subsequently has

elements µ̄z and Σ̄z. Furthermore, for convenience, we define for s the following notation

s> = (s11, s21, vec(S31), . . . , s1g, s2g, vec(S3g)),

and

[s̄ (y;θ)]> = (s̄11 (y;θ) , s̄21 (y;θ) , vec(S̄31 (y;θ)), . . . , s̄1g (y;θ) , s̄2g (y;θ) , vec(S̄3g (y;θ))),

with

s̄1z (y;θ) = τz (y;θ) , s̄2z (y;θ) = τz (y;θ)y, and S̄3z (y;θ) = τz (y;θ)yy>.

Then the application of the M-step is equivalent to apply function θ̄ as a function of s, countaining

the unique elements of π̄z, µ̄z, and Σ̄z, for z ∈ [g], defined by

π̄z(s) =
s1z∑g
j=1 s1j

, µ̄z(s) =
s2z

s1z

, and Σ̄z(s) =
S3z

s1z

− s2zs
>
2z

s2
1z

. (25)

This implies that the mini-batch EM and truncated mini-batch EM algorithms proceed via

update rule θ̄
(
s(r)
)
, where θ̄ and s(r) are as given in (18). We start from θ(0) and s(1) =
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N−1
∑N

i=1 s̄(Yi,θ
(0)). Then, θ(1)> = [θ̄(s(1))]>, which has elements

π̄z
(
s(1)
)

= N−1

N∑
i=1

τz
(
Yi;θ

(0)
)
, µ̄z

(
s(1)
)

=

∑N
i=1 τz

(
Yi;θ

(0)
)
Yi∑N

i=1 τz (Yi;θ(0))
, (26)

and

Σ̄z

(
s(1)
)

=

∑N
i=1 τz

(
Yi;θ

(0)
)
YiY

>
i∑N

i=1 τz (Yi;θ(0))
−

[∑N
i=1 τz

(
Yi;θ

(0)
)
Yi

] [∑N
i=1 τz

(
Yi;θ

(0)
)
Yi

]>
[∑N

i=1 τz (Yi;θ(0))
]2 . (27)

3.3 Convergence analysis of the mini-batch algorithm

In addition to Assumptions A1–A3, B1–B3, and C1–C3, make the additional assumption

D1 The Hessian matrix of
∑n

i=1 log f (yi;θ), evaluated at any θ0 ∈ MEmp
Θ , is non-singular

with respect to θ ∈ Θ.

Assumption D1 is generally satisfied for all but pathological samples {yi}ni=1. The following result

is proved in the Supplementary Materials.

Proposition 3. Let {yi}ni=1 be a realization of some IID random sequence {Yi}ni=1, where each

Yi is hypothesized to arise from a DGP having PDF of the form (3). If
{
s(r)
}∞
i=1

and
{
θ(r)
}∞
i=1

are sequences generated by the mini-batch EM algorithm, defined by (18) and (25), then for any

N ∈ N, if C1, C2, and D1 are satisfied (replacing i by r, and F0 by
∏N

j=1 FEmp, where appropriate),

then, with probability 1,

lim
r→∞

dist
(
s(r),Γ

)
= 0, and lim

r→∞
dist

(
θ(r),MEmp

Θ

)
= 0.

Alternatively, if
{
s(r)
}∞
i=1

and
{
θ(r)
}∞
i=1

are sequences generated by the truncated mini-batch EM
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algorithm, defined by (20), (16), (17) and (25), then for any N ∈ N, if C1 and D1 are satisfied

(replacing i by r, and F0 by
∏N

j=1 FEmp, where appropriate), then, with probability 1,

lim
r→∞

dist
(
s(r),Γ

)
= 0, and lim

r→∞
dist

(
θ(r),MEmp

Θ

)
= 0.

3.4 A truncation sequence

In order to apply the truncated version of the mini-batch EM algorithm, we require an appropriate

sequence {Km}∞m=0 that satisfies condition (14). This can be constructed in parts. Let us write

Km = Dm
g−1 ×

g∏
i=1

(Bmd ×Hm
d ) , (28)

where we shall let c1, c2, c3 ≥ 1,

Dm
g−1 =

{
(π1, . . . , πg) ∈ Rg :

g∑
z=1

πz = 1, and πz ≥
1

c1 +m
, for each z ∈ [g]

}
,

Bmd = [− (c2 +m) , c2 +m]d ,

and

Hm
d =

{
H ∈ Hd : λ1 (H) ≥ 1

c3 +m
, λd (H) ≤ c3 +m

}
,

using the notation λ1 (H) and λd (H) to denote the smallest and largest eigenvalues of the matrix

H. A justification regarding this truncation scheme can be found in the Supplementary Materials.

We make a final note that the construction (28) is not a unique method for satisfying the

conditions of (14). One can instead, for example, replace cj + m, by cj (1 +m) (j ∈ [3]) in the

definitions of the sets that constitute (28).
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4 Simulation studies

We present a pair of simulation studies, based upon the famous Iris data set of Fisher (1936) and

the Wreath data of Fraley et al. (2005), in the main text. A further four simulation scenarios

are presented in the Supplementary Materials. In each case, we utilize the initial small data sets,

obtained from the base R package (R Core Team, 2018) and the mclust package for R (Scrucca

et al., 2016), respectively, and use them as templates to generate much larger data sets. All

computations are conducted in the R programming environment, although much of the bespoke

programs are programmed in C and integrated in R via the Rcpp and RcppArmadillo packages of

(Eddelbuettel, 2013). Furthermore, timings of programs were conducted on a MacBook Pro with

a 2.2 GHz Intel Core i7 processor, 16 GB of 1600 MHz DDR3 RAM, and a 500 GB SSD hard

drive. We note that all of the code used to conduct the simulations and computations for this

manuscript can be accessed from https://github.com/hiendn/StoEMMIX.

In the sequel, in all instances, we shall use the learning rate sequence {γr}∞r=1, where γr =

(1− 10−10) × r6/10, which follows from the choice made by Cappé & Moulines (2009) in their

experiments. In all computations, a fixed number of epochs (or epoch equivalence) of 10 is allotted

to each algorithm. Here, recall that the number of epochs is equal to the number of sweeps through

the data set {yi}ni=1 that an algorithm is allowed. Thus, drawing 10n observations from the data

{yi}ni=1, with replacement, is equivalent to 10 epochs. Thus, each iteration of the standard EM

algorithm counts as a single epoch, whereas, for a mini-batch algorithm with batch size N , every

n/N iterations counts as an epoch.

Next, in both of our studies, we consider batch sizes of N = n/10 and N = n/5, we further

consider Polyak averaging as well as truncation. Thus, for each study, a total of eight variants of

the mini-batch EM algorithm is considered. In the truncate case, we set c1, c2, c3 = 1000. Finally,
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the variants of the mini-batch EM algorithm are compared to the standard (batch) EM algorithm

for fitting finite mixtures of normal distributions. In the interest of fairness, each of the algorithms

is initialized at the same starting value of θ(0), using the randomized initialization scheme suggested

in McLachlan & Peel (2000, Sec. 3.9.3). That is, the same randomized starting instance is used

for the EM algorithm and each of the mini-batch variants.

To the best of our knowledge, the most efficient and reliable implementation of the EM algo-

rithm for finite mixtures of normal distributions, in R, is the em function from the mclust package.

Thus, this will be used for all of our comparisons. Data generation from the template data sets

is handled using the simdataset function from the MixSim package (Melnykov et al., 2012), in

the Iris study, and the simVVV function from mclust in the Wreath study. Timing was conducted

using the proc.time function.

4.1 Iris data

The Iris data (accessed in R via the data(iris) command) contain measurements of d = 4

dimensions from 150 iris flowers, 50 of each are of the species Setosa, Versicolor, and Virginica,

respectively. The 4 dimensions of each flower that are measured are petal length, petal width, sepal

length, and sepal width. To each of the subpopulations of species, we fit a single multivariate normal

distribution to the 50 observations (i.e., we estimate a mean vector and covariance matrix, for each

species). Then, using the three mean vectors and covariance matrices, we construct a template

g = 3 component normal mixture model with equal mixing proportions πz = 1/3 (z ∈ [3]), of form

(3). This template distribution is then used to generate synthetic data sets of any size n.

Two experiments are performed using this simulation scheme. In the first experiment, we gen-

erate n = 106 observations {yi}ni=1 from the template. We then utilize {yi}ni=1 and each of the
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truncated EM algorithm variants as well as the batch EM algorithm to compute ML estimates.

We use a number of measures of performance for each algorithm variant. These include the com-

putation time, the log-likelihood, the squared error of the parameter estimates (SE; the Euclidean

distance as compared to the generative parameter vector), and the adjusted-Rand index (ARI;

Hubert & Arabie, 1985) between the maximum a posteriori clustering labels obtained from the

fitted mixture model and the true generative data labels.

The ARI measures whether or not two sets of labels are in concordance or not. Here a value of

1 indicates perfect similarity, and 0 indicates discordance. Since the ARI allows for randomness in

the labelling process, it is possible to have negative ARI values, which are rare and also indicates

discordance in the data. Each variant is repeated Rep = 100 times, and each performance mea-

surement is recorded in order to obtain a measure of the overall performance of each algorithm.

For future reference, we name this study Iris1. In the second study, which we name Iris2, we repeat

the setup of Iris1 but with the number of observations increased to n = 107.

4.2 Wreath data

The Wreath data (accessed in R via the data(wreath) command) contain 1000 observations of

d = 2 dimensional vectors, each belonging to one of g = 14 distinct but unlabelled subpopulations.

We use the Mclust function from mclust to fit a 14 component mixture normal distributions to

the data. The data, along with the means of the subpopulation normal distributions, are plotted

in Figure 1. Here, each observation is colored based upon the subpopulation that maximizes its a

posteriori probability.

As with the Iris data, using the fitted mixture model as a template, we can then simulate

synthetic data sets of any size n. We perform two experiments using this scheme. In the first
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Figure 1: Plot of the 1000 observations of the Wreath data set, colored by subpopulation with
subpopulation means indicated by crosses.
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experiment, we simulate n = 106 observations and assess the different algorithms, based on the

computation time, the log-likelihood, the SE, and the ARI over Rep=100 repetitions, as per Iris1.

We refer to this experiment as Wreath1. In the second experiment, we repeat the setup of Wreath1,

but with n = 107, instead. We refer to this case as Wreath2.

4.3 Results

Figures 2 and 3 contain box plots that summarize the results of Iris1 and Iris2, respectively.

Similarly, Figures 4 and 5 contain box plots that summarize the results of Wreath1 and Wreath2,

respectively.

Firstly, we note that Polyak averaging requires no additional computational effort, for a given

value of N . Thus, we do not require separate timing data for Polyak averaging variants of the

mini-batch EM algorithms in each of Figures 2–5. From the timing results, we observe that the

standard EM algorithm is faster than the mini-batch versions, in all scenarios, regardless of the

fact that all of the algorithms were computed using 10 epochs worth of data access. This is because

the mini-batch algorithms require more additional intermediate steps in each algorithm loop (e.g.,

random sampling from the empirical distribution), as well as a multiplicative factor of n/N more

loops. From the plots, we observe that the larger value of N tends to result in smaller computing

times. There appears to be no difference in timing between the use of truncation or not.

In the Iris1 and Iris2 studies, we observe that the mini-batch EM algorithms uniformly out-

perform the standard EM algorithm in terms of the log-likelihood, SE, and ARI. In all three

measurements, we observe that N = n/10 performed better than N = n/5, and also that there

were no differences between truncated versions of the mini-batch algorithms and equivalent vari-

ants without truncation. Polyak averaging appears to reduce the performance of the mini-batch
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(d) Adjusted-Rand index results.

Figure 2: Results from Rep = 100 replications of the Iris1 simulation experiment. The ’EM’ box
plot summarizes the performance of the standard EM algorithm. The other plots are labelled by
which variant of the mini-batch EM algorithm is summarized. The value of the batch size N is
indicated (either N = n/10 or N = n/5), and a ’P’ or a ’T’ designates that Polyak averaging or
truncation was used, respectively.
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(b) Log-likelihood results.
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(c) Standard error results.

EM N=n/10 N=n/10,P N=n/5 N=n/5,P N=n/10,T N=n/10,PT N=n/5,T N=n/5,PT

0.
3

0.
5

0.
7

0.
9

A
R

I

(d) Adjusted-Rand index results.

Figure 3: Results from Rep = 100 replications of the Iris2 simulation experiment. The ’EM’ box
plot summarizes the performance of the standard EM algorithm. The other plots are labelled by
which variant of the mini-batch EM algorithm is summarized. The value of the batch size N is
indicated (either N = n/10 or N = n/5), and a ’P’ or a ’T’ designates that Polyak averaging or
truncation was used, respectively.
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(b) Log-likelihood results.
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(c) Standard error results.
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(d) Adjusted-Rand index results.

Figure 4: Results from Rep = 100 replications of the Wreath1 simulation experiment. The ’EM’
box plot summarizes the performance of the standard EM algorithm. The other plots are labelled
by which variant of the mini-batch EM algorithm is summarized. The value of the batch size N is
indicated (either N = n/10 or N = n/5), and a ’P’ or a ’T’ designates that Polyak averaging or
truncation was used, respectively.
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(b) Log-likelihood results.
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(c) Standard error results.

EM N=n/10 N=n/10,P N=n/5 N=n/5,P N=n/10,T N=n/10,PT N=n/5,T N=n/5,PT

0.
1

0.
2

0.
3

0.
4

0.
5

A
R

I

(d) Adjusted-Rand index results.

Figure 5: Results from Rep = 100 replications of the Wreath2 simulation experiment. The ’EM’
box plot summarizes the performance of the standard EM algorithm. The other plots are labelled
by which variant of the mini-batch EM algorithm is summarized. The value of the batch size N is
indicated (either N = n/10 or N = n/5), and a ’P’ or a ’T’ designates that Polyak averaging or
truncation was used, respectively.
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algorithms, for a given level of N , with respect to each of the three measurements.

In the Wreath1 and Wreath2 studies, we observe that the standard and mini-batch EM algo-

rithms perform virtually the same across the log-likelihood, SE, and ARI metrics. This is likely

due to the high degree of separability of each of the g = 12 mixture components of the Wreath

data, in comparison to the overlapping components of the Iris data. Our observation is true for

all of the mini-batch EM variants, with or without truncation or Polyak averaging. Upon first

impression, this may appear as a weakness of the mini-batch EM algorithm, since it produces the

same performance while requiring more computational time. However, we must also remember

that the mini-batch EM algorithm does not require all of the data to be stored in memory at each

iteration of algorithm, whereas the EM algorithm does. Thus, the mini-batch algorithm is feasible

in very large data situations, since it only requires a fixed memory size, of order N , regardless of

sample size n, whereas the standard EM algorithm has a memory requirement that increases with

n.

To expand upon our currently presented results, we have also included a further two simula-

tion studies regarding the fitting of finite mixtures of normal distributions using mini-batch EM

algorithms. Our two studies are based on the Flea data of Wickham et al. (2011), a test scenario

from the ELKI project of Schubert et al. (2015), and an original data generating process. The

ELKI scenario is chosen due to its separability, in order to assess whether our conclusion regarding

Wreath1 and Wreath2 are correct. The Flea data shares similarities with the Iris data but is higher

dimensional. In all cases, we found that the mini-batch algorithms tended to outperform the EM

algorithm in all but timing, on average. Detailed assessments of these studies can be found in the

Supplementary Materials.

In addition, we have also investigated the use of the mini-batch EM algorithm for estimation
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of non-normal mixture models. Namely, we present a pair of algorithms for the estimation of

exponential and Poisson mixture models. We demonstrate their performance via an additional

pair of simulation studies.

To conclude, we make the following recommendations. Firstly, smaller batch sizes appear to

yield higher likelihood values. Secondly, averaging appears to slow convergence of the algorithm

to the higher likelihood value and is thus not recommended. Thirdly, truncation appears to have

no effect on the performance. This is likely due to the fact that truncation may not have been

needed in any of the experiments. In any case, it is always useful to use the truncated version of

the algorithm, in case there are unforeseen instabilities in the optimization process. And finally,

the standard EM algorithm may be preferred to the mini-batch EM algorithm when sample sizes

are small and when the data are highly separable. However, even in the face of high separability,

for large n, it may not be feasible to conduct estimation by the standard EM algorithm and thus

the mini-batch algorithms may be preferred due to feasibility.

It is interesting to observe that Polyak averaging tended to diminish the performance of the

algorithms, in our studied scenarios. This is in contradiction to the theory that suggests that

Polyak averaging should in fact increase the convergence rate to stationary solutions. We note,

however, that the theory is asymptotic and the number of epochs that were used may be too short

for the advantages of Polyak averaging to manifest, in practice.
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5 Real data study

5.1 MNIST data

The MNIST data of LeCun et al. (1998) consists of n = 70, 000 observations of d = 28× 28 = 784

pixel images of handwritten digits. These handwritten digits were sampled nearly uniformly. That

is there were 6903, 7877, 6990, 7141, 6824, 6313, 6876, 7293, 6825, and 6958 observations of the

digits 0–9, respectively.

Next, it is notable that not all d pixels are particularly informative. In fact, there is a great

amount of redundancy in the d dimensions. Out of the d pixels, 65 are always zero, for every

observation. Thus, the dimensions of the data are approximately 8.3% sparse.

We eliminate the spare pixels across all images to obtain a dense dimensionality of ddense = 719.

Using the ddense dimensions of the data, we conduct a principal component analysis (PCA) in order

to further reduce the data dimensionality; see Jolliffe, 2002 for a comprehensive treatment on PCA.

Using the PCA, we extract the principal components (PCs) of each observation, and for various

number of PCs dPC ∈ [ddense]. We can then use the data sets of n observations and dimension dPC,

to estimate mixture of normal distributions for various values of g.

5.2 Experimental setup

In the following study, we utilize only the truncated version of the mini-batch algorithm, having

drawn the conclusions, from Section 4, that there appeared to be no penalty in performance due

to truncation in practice. Again, drawing upon our experience from Section 4, we set N = n/10 =

7000 as the batch size in all applications. The same learning rate sequence of {γr}∞r=1, where

γr = (1− 10−10)× r6/10 is also used, and c1, c2, c3 = 1000.
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We apply the mini-batch algorithm to data with dPC = 10, 20, 50, 100. Initialization of the

parameter vector θ(0) was conducted via the randomization scheme of McLachlan & Peel (2000,

Sec. 3.9.3). The mini-batch algorithm was run 100 times for each dPC and the log-likelihood values

were recorded for both the fitted models using the Polyak averaging and no averaging versions of

the algorithm. The standard EM algorithm, as applied via the em function of the mclust package

is again used for comparison. Each of the algorithms, including the k-means algorithm, were

initialized from the same initial randomization, in the interest of fairness, for each of the 100

runs. That is, a random partition of the data is generated once for each of the 100 runs, and

the initial parameters for the EM, mini-batch and k-means algorithms are all computed from the

same initialization. The log-likelihood values of the standard and mini-batch EM algorithms are

compared along with the ARI values. Algorithms are run for 10 epochs.

We compute the ARI values obtained when comparing the maximum a posteriori clustering

labels, obtained from each of the algorithms (cf. McLachlan & Peel, 2000, Sec. 1.15), and the

true digit classes of each of the images. For a benchmark, we also compare the performance of

the three EM algorithms with the k-means algorithm, as applied via the kmeans function in R,

which implements the algorithm of Hartigan & Wong (1979). For fairness of comparison, we also

allow the k-means algorithm 10 epochs in each of 100 runs. As in Section 4, we note that all

codes are available at https://github.com/hiendn/StoEMMIX, for the sake of reproducibility and

transparency.

5.3 Results

The results from the MNIST experiment are presented in Table 1. We observe that for dPC ∈

{10, 20, 50}, all three EM variants provided better ARI than the k-means algorithm. The best
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ARI values for all three EM algorithms occur when dPC = 20. When dPC = 100, the k-means

algorithm provided a better ARI, which appeared to be somewhat uniform across the four values

of dPC.

Among the EM algorithms, the mini-batch algorithm provided better ARI values, with the

two variants not appearing to be significantly different from one another, when considering the

standard errors of the ARI values, when dPC ∈ {20, 50}. When dPC = 10, we observe that no

averaging yielded a better ARI, whereas, when dPC = 100, averaging appeared to be better, on

average.

Regarding the log-likelihoods, the mini-batch EM algorithm, when applied without averaging,

uniformly and significantly outperformed the standard EM algorithm. On the contrary, when

applied with averaging, the EM algorithm uniformly and significantly outperformed the mini-batch

algorithm. This is also in contrary with what was observed in Section 4. This is an interesting

result considering that the ARI of the mini-batch algorithm, with averaging, is still better than

that of the EM algorithm. As in Section 4, we can recommend the use of the mini-batch EM

algorithm without averaging, as it tends to outperform the standard EM algorithm for fit and is

also yields better clustering outcomes, when measured via the ARI.

6 Conclusions

In Section 2, we reviewed the online EM algorithm framework of Cappé & Moulines (2009), and

stated the key theorems that guarantee the convergence of algorithms that are constructed under

the online EM framework. We then presented a novel interpretation of the online EM algorithm

that yielded our framework for constructing mini-batch EM algorithms. We then utilized the
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Table 1: Tabulation of results from the 100 runs of the EM algorithms and the k-means algorithm,
for each value of dPC ∈ {10, 20, 50, 100}. The columns EM, Mini, and Mini Pol refer to the standard
EM, the mini-batch EM, and the mini-batch EM algorithm with Polyak averaging, respectively.
The SE rows contain the standard error over each of the 100 runs (i.e. the standard deviation over
10). Boldface text highlight the best results.

ARI log-likelihood
dPC EM Mini Mini Pol k-means EM Mini Mini Pol
10 Mean 0.401 0.443 0.432 0.352 -4.98E+06 -4.96E+06 -5.01E+06

SE 0.004 0.004 0.004 0.002 1.19E+03 6.43E+02 5.90E+02
20 Mean 0.436 0.475 0.480 0.367 -9.46E+06 -9.44E+06 -9.52E+06

SE 0.005 0.005 0.005 0.002 2.20E+03 1.37E+03 1.67E+03
50 Mean 0.394 0.434 0.438 0.369 -2.18E+07 -2.17E+07 -2.20E+07

SE 0.005 0.005 0.006 0.002 8.47E+03 7.01E+03 4.85E+03
100 Mean 0.326 0.356 0.377 0.372 -3.99E+07 -3.97E+07 -4.05E+07

SE 0.004 0.004 0.005 0.002 1.83E+04 1.68E+04 8.72E+03

theorems of Cappé & Moulines (2009) in order to produce convergence results for this new mini-

batch EM algorithm framework. Extending upon some remarks of Cappé & Moulines (2009), we

also made rigorous the use of truncation in combination with both the online EM and mini-batch

EM algorithm frameworks, using the construction and theory of Delyon et al. (1999).

In Section 3, we demonstrated how the mini-batch EM algorithm framework could be applied

to construct algorithms for conducting ML estimation of finite mixtures of exponential family

distributions. A specific analysis is made of the particularly interesting case of the normal mixture

models. Here, we validate the conditions that permit the use of the Theorems from Section 2 in

order to guarantee the convergence of the mini-batch EM algorithms for ML estimation of normal

mixture models.

In Section 4, we conducted a set of four simulation studies in order to study the performance

of the mini-batch EM algorithms, implemented in eight different variants, as compared to the

standard EM algorithm for ML estimation of normal mixture models. There, we found that
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regardless of implementation, in many cases, the mini-batch EM algorithms were able to obtain

log-likelihood values that were better on average than the standard EM algorithm. We also found

that the use of larger batch sizes and Polyak averaging tended to diminish performance of the mini-

batch algorithms, but the use of truncation tended to have no effect. Although the mini-batch

algorithms is generally slower than the standard EM algorithm, we note that in many cases, the

fixed memory requirement of the mini-batch algorithms make them feasible where the standard

EM algorithm is not.

A real data study was conducted in Section 5. There, we explored the use of the standard EM

algorithm and the truncated mini-batch EM algorithm for cluster analysis of the famous MNIST

data of LeCun et al. (1998). From our study, we found that the mini-batch EM algorithm was

able to obtain better log-likelihood values than the standard EM algorithm, when applied without

Polyak averaging. However, with averaging, the mini-batch EM algorithm was worse than the

standard EM algorithm, on average. However, regardless of whether averaging was used, or not,

the mini-batch EM algorithm appeared to yield better clustering outcomes, when measured via

the ARI of Hubert & Arabie (1985).

This research poses numerous interesting directions for the future. First, we may extend the

results to other exponential family distributions that permit the satisfaction of theorem assump-

tions from Section 2. We make initial steps in this direction via a pair of mini-batch algorithms for

exponential and Poisson distribution mixtures. Secondly, we may use the framework to construct

mini-batch algorithms for large-scale mixture of regression models (cf. Jones & McLachlan, 1992),

following the arguments made by Cappé & Moulines (2009) that permitted them to construct an

online EM algorithm for their mixture of regressions example analysis. Thirdly, this research theme

can be extended further to the construction of mini-batch algorithms for mixture of experts models
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(cf. Nguyen & Chamroukhi, 2018), which may be facilitated via the Gaussian gating construction

of Xu et al. (1995).

In addition to the three previous research questions, we may also ask questions regarding the

practical application of the mini-batch algorithms. For instance, we may consider the question

of optimizing learning rates and batch sizes for particular application settings. Furthermore, we

may consider whether the theoretical framework still applies to algorithms where we may have

adaptive batch sizes and learning rate regimes. As these directions fall vastly outside the scope of

the current paper, we shall leave them for future exploration.
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