215 research outputs found

    Response of high-risk of recurrence/progression bladder tumours expressing sialyl-Tn and sialyl-6-T to BCG immunotherapy

    Get PDF
    High risk of recurrence/progression bladder tumours is treated with Bacillus Calmette-Guérin (BCG) immunotherapy after complete resection of the tumour. Approximately 75% of these tumours express the uncommon carbohydrate antigen sialyl-Tn (Tn), a surrogate biomarker of tumour aggressiveness. Such changes in the glycosylation of cell-surface proteins influence tumour microenvironment and immune responses that may modulate treatment outcome and the course of disease. The aim of this work is to determine the efficiency of BCG immunotherapy against tumours expressing sTn and sTn-related antigen sialyl-6-T (s6T). METHODS: In a retrospective design, 94 tumours from patients treated with BCG were screened for sTn and s6T expression. In vitro studies were conducted to determine the interaction of BCG with high-grade bladder cancer cell line overexpressing sTn. RESULTS: From the 94 cases evaluated, 36 had recurrence after BCG treatment (38.3%). Treatment outcome was influenced by age over 65 years (HR=2.668; (1.344-5.254); P=0.005), maintenance schedule (HR=0.480; (0.246-0.936); P=0.031) and multifocality (HR=2.065; (1.033-4.126); P=0.040). sTn or s6T expression was associated with BCG response (P=0.024; P<0.0001) and with increased recurrence-free survival (P=0.001). Multivariate analyses showed that sTn and/or s6T were independent predictive markers of recurrence after BCG immunotherapy (HR=0.296; (0.148-0.594); P=0.001). In vitro studies demonstrated higher adhesion and internalisation of the bacillus to cells expressing sTn, promoting cell death. CONCLUSION: s6T is described for the first time in bladder tumours. Our data strongly suggest that BCG immunotherapy is efficient against sTn- and s6T-positive tumours. Furthermore, sTn and s6T expression are independent predictive markers of BCG treatment response and may be useful in the identification of patients who could benefit more from this immunotherapy

    The Time to Offer Treatments for COVID-19

    Get PDF
    Introduction: COVID-19 has several overlapping phases. Treatment has focused on the late stage of the disease in hospital. Yet, the continuation of the pandemic is by propagation of the disease in outpatients. The current public health strategy relies solely on vaccines to prevent disease. Areas Covered: We searched the major national registries, pubmed.org, and the preprint servers for all ongoing, completed and published trial results with subject numbers of 100 or more on, and used a targeted search to find announcements of unpublished trial results. As of 2/15/2021, we found 111 publications reporting findings in human studies on 14 classes of agents, and on 9 vaccines. There were 62 randomized controlled studies, the rest retrospective observational analyses. Only 21 publications dealt with outpatient care, the rest all in hospitalized patients. Remdesivir and convalescent plasma have emergency use authorization for hospitalized patients in the U.S.A. There is also support for glucocorticoid treatment of the COVID-19 respiratory distress syndrome. Monoclonal antibodies are authorized for outpatients, but the supply is inadequate to treat all at time of diagnosis. Favipiravir, ivermectin, and interferons are approved in certain countries Expert Opinion: Worldwide vaccination is now underway. Vaccines and antibodies are highly antigen specific and new variants are appearing. There is a need for treatment of outpatients who contract the disease, in addition to mass immunization. We call on public health authorities to authorize treatments with known low risk and potential benefit for use in parallel with mass immunization

    Trophic consequences of non-native pumpkinseed Lepomis gibbosus for native pond fishes

    Get PDF
    Introduced non-native fishes can cause considerable adverse impacts on freshwater ecosystems. The pumpkinseed Lepomis gibbosus, a North American centrarchid, is one of the most widely distributed non-native fishes in Europe, having established self-sustaining populations in at least 28 countries, including the U.K. where it is predicted to become invasive under warmer climate conditions. To predict the consequences of increased invasiveness, a field experiment was completed over a summer period using a Control comprising of an assemblage of native fishes of known starting abundance and a Treatment using the same assemblage but with elevated L. gibbosus densities. The trophic consequences of L. gibbosus invasion were assessed with stable isotope analysis and associated metrics including the isotopic niche, measured as standard ellipse area. The isotopic niches of native gudgeon Gobio gobio and roach Rutilus rutilus overlapped substantially with that of non-native L. gibbosus, and were also substantially reduced in size compared to ponds where L. gibbosus were absent. This suggests these native fishes shifted to a more specialized diet in L. gibbosus presence. Both of these native fishes also demonstrated a concomitant and significant reduction in their trophic position in L. gibbosus presence, with a significant decrease also evident in the somatic growth rate and body condition of G. gobio. Thus, there were marked changes detected in the isotopic ecology and growth rates of the native fish in the presence of non-native L. gibbosus. The implications of these results for present and future invaded pond communities are discussed

    Effect of malaria transmission reduction by insecticide-treated bed nets (ITNs) on the genetic diversity of Plasmodium falciparum merozoite surface protein (MSP-1) and circumsporozoite (CSP) in western Kenya

    Get PDF
    Background Although several studies have investigated the impact of reduced malaria transmission due to insecticide-treated bed nets (ITNs) on the patterns of morbidity and mortality, there is limited information on their effect on parasite diversity. Methods Sequencing was used to investigate the effect of ITNs on polymorphisms in two genes encoding leading Plasmodium falciparum vaccine candidate antigens, the 19 kilodalton blood stage merozoite surface protein-1 (MSP-119kDa) and the Th2R and Th3R T-cell epitopes of the pre-erythrocytic stage circumsporozoite protein (CSP) in a large community-based ITN trial site in western Kenya. The number and frequency of haplotypes as well as nucleotide and haplotype diversity were compared among parasites obtained from children <5 years old prior to the introduction of ITNs (1996) and after 5 years of high coverage ITN use (2001). Results A total of 12 MSP-119kDa haplotypes were detected in 1996 and 2001. The Q-KSNG-L and E-KSNG-L haplotypes corresponding to the FVO and FUP strains of P. falciparum were the most prevalent (range 32–37%), with an overall haplotype diversity of > 0.7. No MSP-119kDa 3D7 sequence-types were detected in 1996 and the frequency was less than 4% in 2001. The CSP Th2R and Th3R domains were highly polymorphic with a total of 26 and 14 haplotypes, respectively detected in 1996 and 34 and 13 haplotypes in 2001, with an overall haplotype diversity of > 0.9 and 0.75 respectively. The frequency of the most predominant Th2R and Th3R haplotypes was 14 and 36%, respectively. The frequency of Th2R and Th3R haplotypes corresponding to the 3D7 parasite strain was less than 4% at both time points. There was no significant difference in nucleotide and haplotype diversity in parasite isolates collected at both time points. Conclusion High diversity in these two genes has been maintained overtime despite marked reductions in malaria transmission due to ITNs use. The frequency of 3D7 sequence-types was very low in this area. These findings provide information that could be useful in the design of future malaria vaccines for deployment in endemic areas with high ITN coverage and in interpretation of efficacy data for malaria vaccines based on 3D7 parasite strains

    A cohort study of Plasmodium falciparum infection dynamics in Western Kenya Highlands

    Get PDF
    Abstract Background The Kenyan highlands were malaria-free before the 1910s, but a series of malaria epidemics have occurred in the highlands of western Kenya since the 1980s. Longitudinal studies of the genetic structure, complexity, infection dynamics, and duration of naturally acquired Plasmodium falciparum infections are needed to facilitate a comprehensive understanding of malaria epidemiology in the complex Kenyan highland eco-epidemiological systems where malaria recently expanded, as well as the evaluation of control measures. Methods We followed a cohort of 246 children residing in 3 villages at altitudes 1430 - 1580 m in western Kenya. Monthly parasitological surveys were undertaken for one year, yielding 866 P. falciparum isolates that were analyzed using 10 microsatellite markers. Results Infection complexity and genetic diversity were high (HE = 0.787-0.816), with ≥83% of infections harboring more than one parasite clone. Diversity remained high even during the low malaria transmission season. There was no significant difference between levels of genetic diversity and population structure between high and low transmission seasons. Infection turn-over rate was high, with the average infection duration of single parasite genotypes being 1.11 months, and the longest genotype persistence was 3 months. Conclusions These data demonstrate that despite the relatively recent spread of malaria to the highlands, parasite populations seem to have stabilized with no evidence of bottlenecks between seasons, while the ability of residents to clear or control infections indicates presence of effective anti-plasmodial immune mechanisms
    • …
    corecore