8 research outputs found

    An electrogenic redox loop in sulfate reduction reveals a likely widespread mechanism of energy conservation

    Get PDF
    The bioenergetics of anaerobic metabolism frequently relies on redox loops performed by membrane complexes with substrate- and quinone-binding sites on opposite sides of the membrane. However, in sulfate respiration (a key process in the biogeochemical sulfur cycle), the substrate- and quinone-binding sites of the QrcABCD complex are periplasmic, and their role in energy conservation has not been elucidated. Here we show that the QrcABCD complex of Desulfovibrio vulgaris is electrogenic, as protons and electrons required for quinone reduction are extracted from opposite sides of the membrane, with a H+/e− ratio of 1. Although the complex does not act as a H+-pump, QrcD may include a conserved proton channel leading from the N-side to the P-side menaquinone pocket. Our work provides evidence of how energy is conserved during dissimilatory sulfate reduction, and suggests mechanisms behind the functions of related bacterial respiratory complexes in other bioenergetic contexts

    The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis.

    No full text
    Hydrogenases are highly active enzymes for hydrogen production and oxidation. [NiFeSe] hydrogenases, in which selenocysteine is a ligand to the active site Ni, have high catalytic activity and a bias for H2 production. In contrast to [NiFe] hydrogenases, they display reduced H2 inhibition and are rapidly reactivated after contact with oxygen. Here we report an expression system for production of recombinant [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough and study of a selenocysteine-to-cysteine variant (Sec489Cys) in which, for the first time, a [NiFeSe] hydrogenase was converted to a [NiFe] type. This modification led to severely reduced Ni incorporation, revealing the direct involvement of this residue in the maturation process. The Ni-depleted protein could be partly reconstituted to generate an enzyme showing much lower activity and inactive states characteristic of [NiFe] hydrogenases. The Ni-Sec489Cys variant shows that selenium has a crucial role in protection against oxidative damage and the high catalytic activities of the [NiFeSe] hydrogenases.info:eu-repo/semantics/publishe

    Flexibility of Syntrophic Enzyme Systems in Desulfovibrio Species Ensures Their Adaptation Capability to Environmental Changes

    No full text
    The mineralization of organic matter in anoxic environments relies on the cooperative activities of hydrogen producers and consumers obligately linked by interspecies metabolite exchange in syntrophic consortia that may include sulfate reducing species such as Desulfovibrio. To evaluate the metabolic flexibility of syntrophic Desulfovibrio to adapt to naturally fluctuating methanogenic environments, we studied Desulfovibrio alaskensis strain G20 grown in chemostats under respiratory and syntrophic conditions with alternative methanogenic partners, Methanococcus maripaludis and Methanospirillum hungatei, at different growth rates. Comparative whole-genome transcriptional analyses, complemented by G20 mutant strain growth experiments and physiological data, revealed a significant influence of both energy source availability (as controlled by dilution rate) and methanogen on the electron transfer systems, ratios of interspecies electron carriers, energy generating systems, and interspecies physical associations. A total of 68 genes were commonly differentially expressed under syntrophic versus respiratory lifestyle. Under low-energy (low-growth-rate) conditions, strain G20 further had the capacity to adapt to the metabolism of its methanogenic partners, as shown by its differing gene expression of enzymes involved in the direct metabolic interactions (e.g., periplasmic hydrogenases) and the ratio shift in electron carriers used for interspecies metabolite exchange (hydrogen/formate). A putative monomeric [Fe-Fe] hydrogenase and Hmc (high-molecular-weight-cytochrome c(3)) complex-linked reverse menaquinone (MQ) redox loop become increasingly important for the reoxidation of the lactate-/pyruvate oxidation-derived redox pair, DsrC(red) and Fd(red), relative to the Qmo-MQ-Qrc (quinone-interacting membrane-bound oxidoreductase; quinone-reducing complex) loop. Together, these data underscore the high enzymatic and metabolic adaptive flexibility that likely sustains Desulfovibrio in naturally fluctuating methanogenic environments

    Biological Production of Hydrogen

    No full text
    The production of H2 from renewable sources, such as water or biomass, is a sustainable strategy for energy supply. Hydrogenases are the only enzymes that specifically catalyze the reversible reaction of H2 production/uptake with almost no overpotential. In this chapter, we review the advances produced in the last decade in the biocatalytic production of H2, including systems based on isolated hydrogenases as well as those using microorganisms through dark fermentation processes
    corecore