197 research outputs found

    The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast

    Get PDF
    During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here, we show that the Ecm11-Gmc2 complex is a novel SC component, functioning to facilitate assembly of the yeast transverse filament protein, Zip1. Ecm11 and Gmc2 initially localize to the synapsis initiation sites, then throughout the synapsed regions of paired homologous chromosomes. The absence of either Ecm11 or Gmc2 substantially compromises the chromosomal assembly of Zip1 as well as polycomplex formation, indicating that the complex is required for extensive Zip1 polymerization. We also show that Ecm11 is SUMOylated in a Gmc2-dependent manner. Remarkably, in the unSUMOylatable ecm11 mutant, assembly of chromosomal Zip1 remained compromised while polycomplex formation became frequent. We propose that the Ecm11-Gmc2 complex facilitates the assembly of Zip1 and that SUMOylation of Ecm11 is critical for ensuring chromosomal assembly of Zip1, thus suppressing polycomplex formation

    Factors determining the survival of nasopharyngeal carcinoma with lung metastasis alone: does combined modality treatment benefit?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nasopharyngeal carcinoma (NPC) with lung metastasis alone has been reported as a relatively favorable prognostic group, and combined modality treatment might be indicated for selected cases. However, the prognostic factors determining survival of this group and the indication of combined therapy have not been thoroughly studied.</p> <p>Methods</p> <p>We retrospectively reviewed 246 patients of NPC with lung metastasis(es) alone presented at diagnosis or as the first failure after primary treatment from 1993 to 2008 in an academic tertiary hospital. Univariate and multivariate survival analyses of post-metastasis survival (PMS) and overall survival (OS) were carried out to determine the prognostic factors.</p> <p>Results</p> <p>The 3-year, 5-year, and 10-year of PMS and OS for the whole cohort were 34.3%, 17.0%, 8.6% and 67.8%, 45.4%, 18.5%, respectively. The median PMS (45.6 months <it>vs</it>. 23.7 months) and OS (73.7 months <it>vs</it>. 46.2 months) of patients treated with combined therapy was significantly longer than that of those treated with chemotherapy alone (<it>P </it>< 0.001). Age, disease-free interval (DFI) and treatment modality were evaluated as independent prognostic factors of OS, while only age and treatment modality retain their independent significance in PMS analysis. In stratified survival analysis, compared to chemotherapy alone, combined therapy could benefit the patients with DFI > 1 year, but not those with DFI ≤ 1 year.</p> <p>Conclusions</p> <p>Age ≤ 45 years, DFI > 1 year, and the combined therapy were good prognostic factors for NPC patients with lung metastasis(es) alone. The combination of local therapy and the basic chemotherapy should be considered for these patients with DFI > 1 year.</p

    Analysis of RNA splicing defects in PITX2 mutants supports a gene dosage model of Axenfeld-Rieger syndrome

    Get PDF
    BACKGROUND: Axenfeld-Rieger syndrome (ARS) is associated with mutations in the PITX2 gene that encodes a homeobox transcription factor. Several intronic PITX2 mutations have been reported in Axenfeld-Rieger patients but their effects on gene expression have not been tested. METHODS: We present two new families with recurrent PITX2 intronic mutations and use PITX2c minigenes and transfected cells to address the hypothesis that intronic mutations effect RNA splicing. Three PITX2 mutations have been analyzed: a G>T mutation within the AG 3' splice site (ss) junction associated with exon 4 (IVS4-1G>T), a G>C mutation at position +5 of the 5' (ss) of exon 4 (IVS4+5G>C), and a previously reported A>G substitution at position -11 of 3'ss of exon 5 (IVS5-11A>G). RESULTS: Mutation IVS4+5G>C showed 71% retention of the intron between exons 4 and 5, and poorly expressed protein. Wild-type protein levels were proportionally expressed from correctly spliced mRNA. The G>T mutation within the exon 4 AG 3'ss junction shifted splicing exclusively to a new AG and resulted in a severely truncated, poorly expressed protein. Finally, the A>G substitution at position -11 of the 3'ss of exon 5 shifted splicing exclusively to a newly created upstream AG and resulted in generation of a protein with a truncated homeodomain. CONCLUSION: This is the first direct evidence to support aberrant RNA splicing as the mechanism underlying the disorder in some patients and suggests that the magnitude of the splicing defect may contribute to the variability of ARS phenotypes, in support of a gene dosage model of Axenfeld-Rieger syndrome

    Combining modularity, conservation, and interactions of proteins significantly increases precision and coverage of protein function prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the number of newly sequenced genomes and genes is constantly increasing, elucidation of their function still is a laborious and time-consuming task. This has led to the development of a wide range of methods for predicting protein functions in silico. We report on a new method that predicts function based on a combination of information about protein interactions, orthology, and the conservation of protein networks in different species.</p> <p>Results</p> <p>We show that aggregation of these independent sources of evidence leads to a drastic increase in number and quality of predictions when compared to baselines and other methods reported in the literature. For instance, our method generates more than 12,000 novel protein functions for human with an estimated precision of ~76%, among which are 7,500 new functional annotations for 1,973 human proteins that previously had zero or only one function annotated. We also verified our predictions on a set of genes that play an important role in colorectal cancer (<it>MLH1</it>, <it>PMS2</it>, <it>EPHB4 </it>) and could confirm more than 73% of them based on evidence in the literature.</p> <p>Conclusions</p> <p>The combination of different methods into a single, comprehensive prediction method infers thousands of protein functions for every species included in the analysis at varying, yet always high levels of precision and very good coverage.</p

    Pulsed radiofrequency treatment in interventional pain management: mechanisms and potential indications—a review

    Get PDF
    Item does not contain fulltextBACKGROUND: The objective of this review is to evaluate the efficacy of Pulsed Radiofrequency (PRF) treatment in chronic pain management in randomized clinical trials (RCTs) and well-designed observational studies. The physics, mechanisms of action, and biological effects are discussed to provide the scientific basis for this promising modality. METHODS: We systematically searched for clinical studies on PRF. We searched the MEDLINE (PubMed) and EMBASE database, using the free text terms: pulsed radiofrequency, radio frequency, radiation, isothermal radiofrequency, and combination of these. We classified the information in two tables, one focusing only on RCTs, and another, containing prospective studies. Date of last electronic search was 30 May 2010. The methodological quality of the presented reports was scored using the original criteria proposed by Jadad et al. FINDINGS: We found six RCTs that evaluated the efficacy of PRF, one against corticosteroid injection, one against sham intervention, and the rest against conventional RF thermocoagulation. Two trials were conducted in patients with lower back pain due to lumbar zygapophyseal joint pain, one in cervical radicular pain, one in lumbosacral radicular pain, one in trigeminal neuralgia, and another in chronic shoulder pain. CONCLUSION: From the available evidence, the use of PRF to the dorsal root ganglion in cervical radicular pain is compelling. With regards to its lumbosacral counterpart, the use of PRF cannot be similarly advocated in view of the methodological quality of the included study. PRF application to the supracapular nerve was found to be as efficacious as intra-articular corticosteroid in patients with chronic shoulder pain. The use of PRF in lumbar facet arthropathy and trigeminal neuralgia was found to be less effective than conventional RF thermocoagulation techniques

    Magnesium nebulization utilization in management of pediatric asthma (MagNUM PA) trial: study protocol for a randomized controlled trial

    Full text link

    Astrophysics with the Laser Interferometer Space Antenna

    Get PDF
    The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe
    corecore