12,145 research outputs found

    Anomalous optical absorption in a random system with scale-free disorder

    Get PDF
    We report on an anomalous behavior of the absorption spectrum in a one-dimensional lattice with long-range-correlated diagonal disorder with a power-like spectrum in the form S(k) ~ 1/k^A. These type of correlations give rise to a phase of extended states at the band center, provided A is larger than a critical value A_c. We show that for A < A_c the absorption spectrum is single-peaked, while an additional peak arises when A > A_c, signalling the occurrence of the Anderson transition. The peak is located slightly below the low-energy mobility edge, providing a unique spectroscopic tool to monitor the latter. We present qualitative arguments explaining this anomaly.Comment: 4 pages, 4 postscript figures, uses revtex

    The FALCON concept: multi-object spectroscopy combined with MCAO in near-IR

    Get PDF
    A large fraction of the present-day stellar mass was formed between z=0.5 and z~3 and our understanding of the formation mechanisms at work at these epochs requires both high spatial and high spectral resolution: one shall simultaneously} obtain images of objects with typical sizes as small as 1-2kpc(~0''.1), while achieving 20-50 km/s (R >= 5000) spectral resolution. The obvious instrumental solution to adopt in order to tackle the science goal is therefore a combination of multi-object 3D spectrograph with multi-conjugate adaptive optics in large fields. A partial, but still competitive correction shall be prefered, over a much wider field of view. This can be done by estimating the turbulent volume from sets of natural guide stars, by optimizing the correction to several and discrete small areas of few arcsec2 selected in a large field (Nasmyth field of 25 arcmin) and by correcting up to the 6th, and eventually, up to the 60th Zernike modes. Simulations on real extragalactic fields, show that for most sources (>80%), the recovered resolution could reach 0".15-0".25 in the J and H bands. Detection of point-like objects is improved by factors from 3 to >10, when compared with an instrument without adaptive correction. The proposed instrument concept, FALCON, is equiped with deployable mini-integral field units (IFUs), achieving spectral resolutions between R=5000 and 20000. Its multiplex capability, combined with high spatial and spectral resolution characteristics, is a natural ground based complement to the next generation of space telescopes.Comment: ESO Workshop Proceedings: Scientific Drivers for ESO Future VLT/VLTI Instrumentation, 10 pages and 5 figure

    Phase Splitting for Periodic Lie Systems

    Full text link
    In the context of the Floquet theory, using a variation of parameter argument, we show that the logarithm of the monodromy of a real periodic Lie system with appropriate properties admits a splitting into two parts, called dynamic and geometric phases. The dynamic phase is intrinsic and linked to the Hamiltonian of a periodic linear Euler system on the co-algebra. The geometric phase is represented as a surface integral of the symplectic form of a co-adjoint orbit.Comment: (v1) 15 pages. (v2) 16 pages. Some typos corrected. References and further comments added. Final version to appear in J. Phys. A

    Influence of Mn on the magnetocaloric effect of nanoperm-type alloys

    Get PDF
    In this paper, the influence of the Mn content on the magnetocaloric response of ribbon-shaped amorphous samples of Fe80−xMnxB20 x=10, 15, 18, 20, and 24 , has been studied. For this purpose, the temperature and field dependence of the magnetic entropy change SM have been obtained from magnetization curves. The partial substitution of Fe by Mn leads to a monotonous change in the Curie temperature TC of the alloys from 438 K for x=10 to 162 K for x=24, in agreement with the coherent-potential approximation. These Curie temperatures could make them good candidates to be used for magnetic refrigeration at room temperature. For an applied field of 1.5 T, the maximum entropy change SM pk passes from 1 J K−1 kg−1 x=10 to 0.5 J K−1 kg−1 x=24 , and the refrigerant capacity varies between 117 J kg−1 x=10 and 68 J kg−1 x=24 . A linear relationship between SM pk and the average magnetic moment per transition metal atom Fe,Mn has been presented. © 2010 American Institute of Physics

    Recoil Order Chiral Corrections to Baryon Octet Axial Currents

    Full text link
    We calculate chiral corrections to the octet axial currents through O(p3){\cal O}(p^3) using baryon chiral perturbation theory (BCPT). The relativistic BCPT framework allows one to sum an infinite series of recoil corrections at a given order in the chiral expansion. We also include SU(3)-breaking operators occuring at O(p2){\cal O}(p^2) not previously considered. We determine the corresponding low-energy constants (LEC's) from hyperon semileptonic decay data using a variety of infrared regularization schemes. We find that the chiral expansion of the axial currents does not display the proper convergence behavior, regardless of which scheme is chosen. We explore the implications of our analysis for determinations of the strange quark contribution to the nucleon spin, Δs\Delta s.Comment: RevTex, 19 pages + 2 PS figure

    On the structure of large N cancellations in baryon chiral perturbation theory

    Get PDF
    We show how to compute loop graphs in heavy baryon chiral perturbation theory including the full functional dependence on the ratio of the Delta--nucleon mass difference to the pion mass, while at the same time automatically incorporating the 1/N cancellations that follow from the large-N spin-flavor symmetry of baryons in QCD. The one-loop renormalization of the baryon axial vector current is studied to demonstrate the procedure. A new cancellation is identified in the one-loop contribution to the baryon axial vector current. We show that loop corrections to the axial vector currents are exceptionally sensitive to deviations of the ratios of baryon-pion axial couplings from SU(6) values

    Entropy production and wave packet dynamics in the Fock space of closed chaotic many-body systems

    Full text link
    Highly excited many-particle states in quantum systems such as nuclei, atoms, quantum dots, spin systems, quantum computers etc., can be considered as ``chaotic'' superpositions of mean-field basis states (Slater determinants, products of spin or qubit states). This is due to a very high level density of many-body states that are easily mixed by a residual interaction between particles (quasi-particles). For such systems, we have derived simple analytical expressions for the time dependence of energy width of wave packets, as well as for the entropy, number of principal basis components and inverse participation ratio, and tested them in numerical experiments. It is shown that the energy width Δ(t)\Delta (t) increases linearly and very quickly saturates. The entropy of a system increases quadratically, S(t)t2S(t) \sim t^2 at small times, and after, can grow linearly, S(t)tS(t) \sim t, before the saturation. Correspondingly, the number of principal components determined by the entropy, Npcexp(S(t))N_{pc} \sim exp{(S(t))}, or by the inverse participation ratio, increases exponentially fast before the saturation. These results are explained in terms of a cascade model which describes the flow of excitation in the Fock space of basis components. Finally, a striking phenomenon of damped oscillations in the Fock space at the transition to an equilibrium is discussed.Comment: RevTex, 14 pages including 12 eps-figure

    Diffusion in disordered systems under iterative measurement

    Full text link
    We consider a sequence of idealized measurements of time-separation Δt\Delta t onto a discrete one-dimensional disordered system. A connection with Markov chains is found. For a rapid sequence of measurements, a diffusive regime occurs and the diffusion coefficient DD is analytically calculated. In a general point of view, this result suggests the possibility to break the Anderson localization due to decoherence effects. Quantum Zeno effect emerges because the diffusion coefficient DD vanishes at the limit Δt0\Delta t \to 0.Comment: 8 pages, 0 figures, LATEX. accepted in Phys.Rev.

    GRB host galaxies with VLT/X-Shooter: properties at 0.8 < z < 1.3

    Get PDF
    Long gamma-ray bursts (LGRBs) are associated with the death of massive stars. Their host galaxies therefore represent a unique class of objects tracing star formation across the observable Universe. Indeed, recently accumulated evidence shows that GRB hosts do not differ substantially from general population of galaxies at high (z > 2) redshifts. However, it has been long recognised that the properties of z < 1.5 hosts, compared to general star-forming population, are unusual. To better understand the reasons for the supposed difference in LGRB hosts properties at z < 1.5, we obtained VLT/X- Shooter spectra of six hosts lying in the redshift range of 0.8 < z < 1.3. Some of these hosts have been observed before, yet we still lack well constrained information on their characteristics such as metallicity, dust extinction and star formation rate. We search for emission lines in the VLT/X-Shooter spectra of the hosts and measure their fluxes. We perform a detailed analysis, estimating host average extinction, star-formation rates, metallicities and electron densities where possible. Measured quantities of our hosts are compared to a larger sample of previously observed GRB hosts at z < 2. Star-formation rates and metallicities are measured for all the hosts analyzed in this paper and metallicities are well determined for 4 hosts. The mass-metallicity relation, the fundamental metallicity relation and SFRs derived from our hosts occupy similar parameter space as other host galaxies investigated so-far at the same redshift. We therefore conclude that GRB hosts in our sample support the found discrepancy between the properties of low-redshift GRB hosts and the general population of star- forming galaxies.Comment: 13 pages, 6 figures, accepted for publication in MNRA
    corecore