In the context of the Floquet theory, using a variation of parameter
argument, we show that the logarithm of the monodromy of a real periodic Lie
system with appropriate properties admits a splitting into two parts, called
dynamic and geometric phases. The dynamic phase is intrinsic and linked to the
Hamiltonian of a periodic linear Euler system on the co-algebra. The geometric
phase is represented as a surface integral of the symplectic form of a
co-adjoint orbit.Comment: (v1) 15 pages. (v2) 16 pages. Some typos corrected. References and
further comments added. Final version to appear in J. Phys. A