90 research outputs found

    Mutations in Wnt2 Alter Presynaptic Motor Neuron Morphology and Presynaptic Protein Localization at the Drosophila Neuromuscular Junction

    Get PDF
    Wnt proteins are secreted proteins involved in a number of developmental processes including neural development and synaptogenesis. We sought to determine the role of the Drosophila Wnt7b ortholog, Wnt2, using the neuromuscular junction (NMJ). Mutations in wnt2 produce an increase in the number of presynaptic branches and a reduction in immunolabeling of the active zone proteins, Bruchpilot and synaptobrevin, at the NMJ. There was no change, however, in immunolabeling for the presynaptic proteins cysteine-string protein (CSP) and synaptotagmin, nor the postsynaptic proteins GluRIIA and DLG at the NMJ. Consistent with the presynaptic defects, wnt2 mutants exhibit approximately a 50% reduction in evoked excitatory junctional currents. Rescue, RNAi, and tissue-specific qRT-PCR experiments indicate that Wnt2 is expressed by the postsynaptic cell where it may serve as a retrograde signal that regulates presynaptic morphology and the localization of presynaptic proteins

    A cross-sectional study of US rural adults’ consumption of fruits and vegetables: do they consume at least five servings daily?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rural residents are increasingly identified as being at greater risk for health disparities. These inequities may be related to health behaviors such as adequate fruits and vegetable consumption. There is little national-level population-based research about the prevalence of fruit and vegetable consumption by US rural population adults. The objective of this study was to examine the prevalence differences between US rural and non-rural adults in consuming at least five daily servings of combined fruits and vegetables.</p> <p>Methods</p> <p>Cross-sectional analysis of weighted 2009 Behavioral Risk Factor Surveillance Survey (BRFSS) data using bivariate and multivariate techniques. 52,259,789 US adults were identified as consuming at least five daily servings of fruits and vegetables of which 8,983,840 were identified as living in rural locales.</p> <p>Results</p> <p>Bivariate analysis revealed that in comparison to non-rural US adults, rural adults were less likely to consume five or more daily servings of fruits and vegetables (OR = 1.161, 95% CI 1.160-1.162). Logistic regression analysis revealed that US rural adults consuming at least five daily servings of fruits and vegetables were more likely to be female, non-Caucasian, married or living with a partner, living in a household without children, living in a household whose annual income was > $35,000, and getting at least moderate physical activity. They were also more likely to have a BMI of <30, have a personal physician, have had a routine medical exam in the past 12 months, self-defined their health as good to excellent and to have deferred medical care because of cost. When comparing the prevalence differences between rural and non-rural US adults within a state, 37 States had a lower prevalence of rural adults consuming at least five daily servings of fruits and vegetables and 11 States a higher prevalence of the same.</p> <p>Conclusions</p> <p>This enhanced understanding of fruit and vegetable consumption should prove useful to those seeking to lessen the disparity or inequity between rural and non-rural adults. Additionally, those responsible for health-related planning could benefit from the knowledge of how their state ranks in comparison to others vis-Γ -vis the consumption of fruits and vegetables by rural adults---a population increasingly being identified as one at risk for health disparities.</p

    ISL1 Directly Regulates FGF10 Transcription during Human Cardiac Outflow Formation

    Get PDF
    The LIM homeodomain gene Islet-1 (ISL1) encodes a transcription factor that has been associated with the multipotency of human cardiac progenitors, and in mice enables the correct deployment of second heart field (SHF) cells to become the myocardium of atria, right ventricle and outflow tract. Other markers have been identified that characterize subdomains of the SHF, such as the fibroblast growth factor Fgf10 in its anterior region. While functional evidence of its essential contribution has been demonstrated in many vertebrate species, SHF expression of Isl1 has been shown in only some models. We examined the relationship between human ISL1 and FGF10 within the embryonic time window during which the linear heart tube remodels into four chambers. ISL1 transcription demarcated an anatomical region supporting the conserved existence of a SHF in humans, and transcription factors of the GATA family were co-expressed therein. In conjunction, we identified a novel enhancer containing a highly conserved ISL1 consensus binding site within the FGF10 first intron. ChIP and EMSA demonstrated its direct occupation by ISL1. Transcription mediated by ISL1 from this FGF10 intronic element was enhanced by the presence of GATA4 and TBX20 cardiac transcription factors. Finally, transgenic mice confirmed that endogenous factors bound the human FGF10 intronic enhancer to drive reporter expression in the developing cardiac outflow tract. These findings highlight the interest of examining developmental regulatory networks directly in human tissues, when possible, to assess candidate non-coding regions that may be responsible for congenital malformations

    Epigenetic mechanisms in virus-induced tumorigenesis

    Get PDF
    About 15–20% of human cancers worldwide have viral etiology. Emerging data clearly indicate that several human DNA and RNA viruses, such as human papillomavirus, Epstein–Barr virus, Kaposi’s sarcoma-associated herpesvirus, hepatitis B virus, hepatitis C virus, and human T-cell lymphotropic virus, contribute to cancer development. Human tumor-associated viruses have evolved multiple molecular mechanisms to disrupt specific cellular pathways to facilitate aberrant replication. Although oncogenic viruses belong to different families, their strategies in human cancer development show many similarities and involve viral-encoded oncoproteins targeting the key cellular proteins that regulate cell growth. Recent studies show that virus and host interactions also occur at the epigenetic level. In this review, we summarize the published information related to the interactions between viral proteins and epigenetic machinery which lead to alterations in the epigenetic landscape of the cell contributing to carcinogenesis

    Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Get PDF
    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways

    Synthetic lethal therapies for cancer: what's next after PARP inhibitors?

    Get PDF
    The genetic concept of synthetic lethality has now been validated clinically through the demonstrated efficacy of poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of cancers in individuals with germline loss-of-function mutations in either BRCA1 or BRCA2. Three different PARP inhibitors have now been approved for the treatment of patients with BRCA-mutant ovarian cancer and one for those with BRCA-mutant breast cancer; these agents have also shown promising results in patients with BRCA-mutant prostate cancer. Here, we describe a number of other synthetic lethal interactions that have been discovered in cancer. We discuss some of the underlying principles that might increase the likelihood of clinical efficacy and how new computational and experimental approaches are now facilitating the discovery and validation of synthetic lethal interactions. Finally, we make suggestions on possible future directions and challenges facing researchers in this field
    • …
    corecore