16 research outputs found

    Identifying associations between diabetes and acute respiratory distress syndrome in patients with acute hypoxemic respiratory failure: an analysis of the LUNG SAFE database

    Get PDF
    Background: Diabetes mellitus is a common co-existing disease in the critically ill. Diabetes mellitus may reduce the risk of acute respiratory distress syndrome (ARDS), but data from previous studies are conflicting. The objective of this study was to evaluate associations between pre-existing diabetes mellitus and ARDS in critically ill patients with acute hypoxemic respiratory failure (AHRF). Methods: An ancillary analysis of a global, multi-centre prospective observational study (LUNG SAFE) was undertaken. LUNG SAFE evaluated all patients admitted to an intensive care unit (ICU) over a 4-week period, that required mechanical ventilation and met AHRF criteria. Patients who had their AHRF fully explained by cardiac failure were excluded. Important clinical characteristics were included in a stepwise selection approach (forward and backward selection combined with a significance level of 0.05) to identify a set of independent variables associated with having ARDS at any time, developing ARDS (defined as ARDS occurring after day 2 from meeting AHRF criteria) and with hospital mortality. Furthermore, propensity score analysis was undertaken to account for the differences in baseline characteristics between patients with and without diabetes mellitus, and the association between diabetes mellitus and outcomes of interest was assessed on matched samples. Results: Of the 4107 patients with AHRF included in this study, 3022 (73.6%) patients fulfilled ARDS criteria at admission or developed ARDS during their ICU stay. Diabetes mellitus was a pre-existing co-morbidity in 913 patients (22.2% of patients with AHRF). In multivariable analysis, there was no association between diabetes mellitus and having ARDS (OR 0.93 (0.78-1.11); p = 0.39), developing ARDS late (OR 0.79 (0.54-1.15); p = 0.22), or hospital mortality in patients with ARDS (1.15 (0.93-1.42); p = 0.19). In a matched sample of patients, there was no association between diabetes mellitus and outcomes of interest. Conclusions: In a large, global observational study of patients with AHRF, no association was found between diabetes mellitus and having ARDS, developing ARDS, or outcomes from ARDS. Trial registration: NCT02010073. Registered on 12 December 2013

    Spontaneous Breathing in Early Acute Respiratory Distress Syndrome: Insights From the Large Observational Study to UNderstand the Global Impact of Severe Acute Respiratory FailurE Study

    Get PDF
    OBJECTIVES: To describe the characteristics and outcomes of patients with acute respiratory distress syndrome with or without spontaneous breathing and to investigate whether the effects of spontaneous breathing on outcome depend on acute respiratory distress syndrome severity. DESIGN: Planned secondary analysis of a prospective, observational, multicentre cohort study. SETTING: International sample of 459 ICUs from 50 countries. PATIENTS: Patients with acute respiratory distress syndrome and at least 2 days of invasive mechanical ventilation and available data for the mode of mechanical ventilation and respiratory rate for the 2 first days. INTERVENTIONS: Analysis of patients with and without spontaneous breathing, defined by the mode of mechanical ventilation and by actual respiratory rate compared with set respiratory rate during the first 48 hours of mechanical ventilation. MEASUREMENTS AND MAIN RESULTS: Spontaneous breathing was present in 67% of patients with mild acute respiratory distress syndrome, 58% of patients with moderate acute respiratory distress syndrome, and 46% of patients with severe acute respiratory distress syndrome. Patients with spontaneous breathing were older and had lower acute respiratory distress syndrome severity, Sequential Organ Failure Assessment scores, ICU and hospital mortality, and were less likely to be diagnosed with acute respiratory distress syndrome by clinicians. In adjusted analysis, spontaneous breathing during the first 2 days was not associated with an effect on ICU or hospital mortality (33% vs 37%; odds ratio, 1.18 [0.92-1.51]; p = 0.19 and 37% vs 41%; odds ratio, 1.18 [0.93-1.50]; p = 0.196, respectively ). Spontaneous breathing was associated with increased ventilator-free days (13 [0-22] vs 8 [0-20]; p = 0.014) and shorter duration of ICU stay (11 [6-20] vs 12 [7-22]; p = 0.04). CONCLUSIONS: Spontaneous breathing is common in patients with acute respiratory distress syndrome during the first 48 hours of mechanical ventilation. Spontaneous breathing is not associated with worse outcomes and may hasten liberation from the ventilator and from ICU. Although these results support the use of spontaneous breathing in patients with acute respiratory distress syndrome independent of acute respiratory distress syndrome severity, the use of controlled ventilation indicates a bias toward use in patients with higher disease severity. In addition, because the lack of reliable data on inspiratory effort in our study, prospective studies incorporating the magnitude of inspiratory effort and adjusting for all potential severity confounders are required

    Epidemiology and patterns of tracheostomy practice in patients with acute respiratory distress syndrome in ICUs across 50 countries

    Get PDF
    Background: To better understand the epidemiology and patterns of tracheostomy practice for patients with acute respiratory distress syndrome (ARDS), we investigated the current usage of tracheostomy in patients with ARDS recruited into the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG-SAFE) study. Methods: This is a secondary analysis of LUNG-SAFE, an international, multicenter, prospective cohort study of patients receiving invasive or noninvasive ventilation in 50 countries spanning 5 continents. The study was carried out over 4 weeks consecutively in the winter of 2014, and 459 ICUs participated. We evaluated the clinical characteristics, management and outcomes of patients that received tracheostomy, in the cohort of patients that developed ARDS on day 1-2 of acute hypoxemic respiratory failure, and in a subsequent propensity-matched cohort. Results: Of the 2377 patients with ARDS that fulfilled the inclusion criteria, 309 (13.0%) underwent tracheostomy during their ICU stay. Patients from high-income European countries (n = 198/1263) more frequently underwent tracheostomy compared to patients from non-European high-income countries (n = 63/649) or patients from middle-income countries (n = 48/465). Only 86/309 (27.8%) underwent tracheostomy on or before day 7, while the median timing of tracheostomy was 14 (Q1-Q3, 7-21) days after onset of ARDS. In the subsample matched by propensity score, ICU and hospital stay were longer in patients with tracheostomy. While patients with tracheostomy had the highest survival probability, there was no difference in 60-day or 90-day mortality in either the patient subgroup that survived for at least 5 days in ICU, or in the propensity-matched subsample. Conclusions: Most patients that receive tracheostomy do so after the first week of critical illness. Tracheostomy may prolong patient survival but does not reduce 60-day or 90-day mortality. Trial registration: ClinicalTrials.gov, NCT02010073. Registered on 12 December 2013

    The role of lysosomal cysteine proteases in crustacean immune response

    No full text
    Over the long course of evolution and under the selective pressure exerted by pathogens and parasites, animals have selectively fixed a number of defense mechanisms against the constant attack of intruders. The immune response represents a key component to optimize the biological fitness of individuals. Two decades ago, prevention and control of diseases in crustacean aquaculture systems were considered priorities in most shrimp-producing countries, but knowledge was scarce and various pathogens have severely affected aquaculture development around the world. Scientific contributions have improved our understanding of the crustacean immune response. Several studies confirm the central role played by proteases in the immune response of animals, and the cooperative interaction of these enzymes in a wide variety of organisms is well known. This review summarizes the current information regarding the role of cysteine proteases in the immune system of Crustacea and points to aspects that are needed to provide a better integration of our knowledge

    Effect of dietary protein level and source on digestive proteolytic enzyme activity of juvenile Senegalese sole, Solea senegalensis Kaup 1850

    Get PDF
    The effect of dietary protein level and protein source on growth and proteolytic activity of juvenile Solea senegalensis was studied. In Experiment 1, fish were fed on four experimental diets containing increased protein levels (36, 46, 56 and 67%). In Experiment 2, Senegalese soles were fed on five diets with partial substitution of fish meal by soybean meal, soybean protein concentrate, soybean protein isolate, wheat gluten meal or pea protein concentrate. Results prove that growth and proteolytic activity in the distal intestine of fish were affected by the quantitative increase in dietary protein. The origin of protein source used in the elaboration of experimental diets affected both the amount and composition of the alkaline proteases secreted into the intestinal lumen; however, it did not decrease animal growth. Juvenile Senegalese sole showed capability to modulate digestive protease secretion when the concentration and/or source of dietary protein were modified. Quantity and quality of dietary protein affected protein hydrolysis in Senegalese sole intestine. This study establishes that 30% fish meal protein can be replaced by soybean derivatives without affecting intestinal proteases. Replacement with wheat gluten meal or pea protein concentrate should be taken cautiously, but further research is needed to establish whether growth performance and digestive enzyme physiology of Senegalese sole are affected by plant protein-supplemented diets in a long-term trial.This work was supported by Projects INIA RTA-2007-00026-C02-01 and 02, and the European Regional Development Fund. Ana Rodiles Guerrero was financially supported by the grant "Technology in the Larval Rearing of New Species of Fish" (IFAPA, Andalusian Regional Government, Spain). The authors thank Jose I. Navas Triano, Sean Tibbetts, Joyce Milley, Toni Barros and Andres Monino for their technical assistance. The authors are grateful to Francisco Trujillo for the revision of the English language text. Part of experimental work was carried out at CEIA3 facilities.Rodiles, A.; Santigosa, E.; Herrera, M.; Hachero Cruzado, I.; Cordero, ML.; Martínez-Llorens, S.; Lall, SP.... (2012). Effect of dietary protein level and source on digestive proteolytic enzyme activity of juvenile Senegalese sole, Solea senegalensis Kaup 1850. Aquaculture International. 20(6):1053-1070. https://doi.org/10.1007/s10499-012-9508-6S10531070206Alarcón FJ, Díaz M, Moyano FJ, Abellán E (1998) Characterization and functional properties of digestive proteases in two sparids; gilthead sea bream (Sparus aurata) and common dentex (Dentex dentex). Fish Physiol Biochem 19:257–267Alarcón FJ, García-Carreño FL, Navarrete del Toro MA (2001) Effect of plant protease inhibitors on digestive proteases in two fish species, Lutjanus argentiventris and L. novemfasciatus. Fish Physiol Biochem 24:179–181Alarcón FJ, Díaz M, Moyano FJ (2002) Evaluation of different protein sources for aquafeeds by an optimised pH-stat system. J Sci Food Agric 82:697–704Aragão C, Conceição LEC, Dias J, Marques AC, Gomes E, Dinis MT (2003) Soy protein concentrate as a protein source for Senegalese sole (Solea senegalensis, Kaup 1858) diets: effects on growth and amino acid metabolism of postlarvae. Aquac Res 34:1443–1452Arndt RE, Hardy RW, Sugiura SH, Dong FM (1999) Effects of heat treatment and substitution level on palatability and nutritional value of soy defatted £our in feeds for Coho salmon (Oncorhynchus kisutch). Aquaculture 180:129–145Association of Official Analytical Chemists (1990) Official methods of analysis, 15th edn. Association of official analytical chemists, Arlington, USA, 1298Bazaz MM, Keshavanath P (1993) Effect of feeding different levels of sardine oil on growth, muscle composition and digestive enzyme activities of mahseer, Tor khudree. Aquaculture 115:111–119Bonaldo A, Roem AJ, Pecchini A, Grilli E, Gatta PP (2006) Influence of dietary soybean meal levels on growth, feed utilization, gut histology of Egyptian sole (Solea aegyptiaca) juveniles. Aquaculture 261:580–586Bureau DP, Harris AM, Cho CY (1998) The effects of purified alcohol extracts from soy products on feed intake and growth of Chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss). Aquaculture 161:27–43Cahu CL, Zambonino Infante JL (1994) Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: effect on digestive enzymes. Comp Biochem Physiol A 109:213–222Chong ASC, Hashim R, Ali AB (2002) Assessment of dry matter and protein digestibility of selected raw ingredients by discus fish (Symphysodon aequifasciata) using in vivo and in vitro methods. Aquac Nutr 8:229–238Debnath D, Pal AK, Sahu NP, Yengkokapm S, Barauh K, Choudhury D, Venkateshwarlu G (2007) Digestive enzymes and metabolic profile of Labeo rohita fingerlings fed diets with different crude protein levels. Comp Biochem Physiol B 146:107–114Dias J, Rueda-Jasso R, Panserat S, Conceição LEC, Gomes EF, Dinis MT (2004) Effect of dietary carbohydrate-to-lipid ratios on growth, lipid deposition and metabolic hepatic enzymes in juveniles Senegalese sole (Solea senegalensis, Kaup). Aquac Res 35:1122–1130Dias J, Yúfera M, Valente LMP, Rema P (2010) Feed transit and apparent protein, phosphorus and energy digestibility of practical feed ingredients by Senegalese sole (Solea senegalensis). Aquaculture 302:94–99Dinis MT, Ribeiro L, Soares F, Sarasquete C (1999) A review of the cultivation potential of Solea senegalensis in Spain and in Portugal. Aquaculture 176:27–38Einarsson S, Davies PS, Talbot C (1997) Effect of exogenous cholecystokinin on the discharge of the gallbladder and the secretion of trypsin and chymotrypsin from the pancreas of the Atlantic salmon, Salmo salar L. Comp Biochem Physiol C 117:63–67El-Saidy DMSD, Dabrowski K, Bai SC (2000) Nutritional effects of protein source in starter diets for channel catfish (Ictalurus punctatus Rafinesque) in suboptimal water temperature. Aquac Res 31:885–892Escaffe A, Kaushik S, Mambrini M (2007) Morphometric evaluation of changes in the digestive tract of rainbow trout replacement with soy protein concentrate. Aquaculture 273:127–138Eusebio PS, Coloso RM (2002) Proteolytic enzyme activity of juvenile Asian sea bass, Lates calcifer (Bloch), is increased with protein intake. Aquac Res 33:569–574Francis G, Makkar HPS, Becker K (2001) Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199:197–227Garcia-Carreño FL, Dimes LE, Haard NF (1993) Substrate gel-electrophoresis for composition and molecular-weight of proteinases of proteinaceous proteinase-inhibitors. Anal Biochem 214:65–69Gatlin DBIII, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G, Krogdahl Nelson R, Overturf K, Rust M, Sealey W, Skonberg D, Souza EJ, Stone D, Wilson R, Wurtele E (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res 38:551–579Gatta PP, Parma L, Guarniero I, Mandrioli L, Sirri R, Fontanillas R, Bonaldo A (2010). Growth, feed utilization and liver histology of juvenile common sole (Solea solea L.) fed isoenergetic diets with increasing protein levels. Aquac Res 42:313–321González-Félix ML, Castillo-Yañez FJ, Ocaño-Higuera VM, Perez-Velazquez M, Cota-Moreno V, Lozano-Taylor J (2010) Effect of dietary protein source and time on alkaline proteolytic activity of Nile tilapia (Oreochromis niloticus). Fish Physiol Biochem 36:779–785Gouveia A, Davies SJ (1998) Preliminary nutritional evaluation of pea seed meal (Pisum satium) for juvenile European Sea bass (Dicentrarchus labrax). Aquaculture 166:311–320Gouveia A, Davies SJ (2000) Inclusion of an extruded dehulled pea seed meal in diets for juvenile European Sea bass (Dicentrarchus labrax). Aquaculture 182:183–193Guillaume J, Choubert G (2001) Digestive physiology and nutrient digestibility in fishes. In: Guillaume J, Kaushik S, Bergot P, Métailler R (eds) Nutrition and feeding of fish and crustaceans. Springer, Chichester, pp 27–58Haard NF, Dimes LE, Arndt RE, Dong FM (1996) Estimation of protein digestibility. IV. Digestive proteinases from pyloric caeca of Coho salmon (Oncorhynchus kisutch) fed diets containing soybean meal. Comp Biochem Physiol B 115:533–540Hidalgo MC, Urea E, Sanz A (1999) Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture 170:267–283Howell B, Conceiçao L, Prickett R, Cañavate P, Mañanos E (2009) Sole farming: nearly there but not quite? Aquac Eur 34:24–27Imsland AK, Foss A, Conceição LEC, Dinis MT, Delbare D, Schram E, Kamstra A, Rema P, White P (2003) A review of the culture potential of Solea solea and S. senegalensis. Rev Fish Biol Fish 13:379–407Johnson LR (2001) Gastric secretion. In: Johnson LR, Gerwin TA (eds) Gastrointestinal physiology, 6th edn. Mosby, St. Louis, pp 75–94Kohla U, Saint-Paul U, Friebe J, Wernicke D, Hilge V, Braum E (1992) Growth, digestive enzyme activities and hepatic glycogen levels in juvenile Colossoma macropomum Cuvier from South America during feeding, starvation and refeeding. Aquac Fish Man 23:189–208Krogdahl A, Lea TB, Olli JL (1994) Soybean proteinase-inhibitors affect intestinal trypsin activities and amino-acid digestibilities in rainbow-trout (Oncorhynchus mykiss). Comp Biochem Physiol A 107:215–219Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227:680–688Lopez–Lopez S, Nolasco H, Villareal-Colmenares H, Civera-Cerecedo R (2005) Digestive enzyme response to supplemental ingredients in practical diets for juvenile freshwater crayfish Cherax quadricarinatus. Aquac Nutr 11:79–85Mohanta KN, Mohanty SN, Jena JK, Sahu NP (2008) Protein requirement of silver barb, Puntius gonionotus fingerlings. Aquac Nutr 14:143–152Moyano FJ, Martínez I, Díaz M, Alarcón FJ (1999) Inhibition of digestive proteases by vegetable meals in three fish species; seabream (Sparus aurata), tilapia (Oreochromis niloticus) and African sole (Solea senegalensis). Comp Biochem Physiol B 122:327–332Olli JJ, Hjelmeland K, Krogdahl Á (1994) Soybean trypsin inhibitors in diets for Atlantic salmon (Salmo salar, L.): effects on nutrient digestibilities and trypsin in pyloric caeca homogenate and intestinal content. Comp Biochem Physiol A 109:923–928Olsson C, Holmgren S (2001) The control of gut motility. Comp Biochem Physiol A 128:481–503Olsson C, Aldman G, Larsson A, Holmgren S (1999) Cholecystokinin affects gastric emptying and stomach motility in the rainbow trout Oncorhynchus mykiss. J Exp Biol 202:161–170Ostaszewska T, Dabrowski K, Palacios ME, Olejniczak M, Wieczorek M (2005) Growth and morphological changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) and pacu (Piaractus mesopotamicus) due to casein replacement with soybean proteins. Aquaculture 245:273–286Øverland M, Sørensen M, Storebakken T, Penn M, Krogdahl Å, Skrede A (2009) Pea protein concentrate substituting fish meal or soybean meal in diets for Atlantic salmon (Salmo salar)—effect on growth performance, nutrient digestibility, carcass composition, gut health, and physical feed quality. Aquaculture 288:305–311Penn MH, Bendiksen EÅ, Campbell P, Krogdahl Å (2011) High level of dietary pea protein concentrate induces enteropathy in Atlantic salmon (Salmo salar L.). Aquaculture 310:267–273Rema P, Conceição LEC, Evers F, Castro-Cunha M, Dinis MT, Dias J (2008) Optimal dietary protein levels in juvenile Senegalese sole (Solea senegalensis). Aquac Nutr 14:263–269Rodiles A, Hachero I, Herrera M, Navas JI, Alarcón FJ (2007) Protein requirement of juvenile Senegal sole (Solea senegalensis Kaup 1858) in intensive culture. In: Proceedings form of the 1st international symposium of marine science (ISMS), University of Valencia, Spain, 28–31 March 2007Rojas-García CR, Rønnestad I (2002) Cholecystokinin and tryptic activity in the gut and body of developing Atlantic halibut larvae: evidence for participation in the regulation of protein digestion. J Fish Biol 61:973–986Romarheim OH, Skrede A, Penn M, Mydlanda LT, Krogdahl Å, Storebakken T (2007) Lipid digestibility, bile drainage and development of morphological intestinal changes in rainbow trout (Oncorhynchus mykiss) fed diets containing defatted soybean meal. Aquaculture 274:329–338Rubio VC, Navarro DB, Madrid FJ, Sánchez-Vázquez FJ (2009) Macronutrient self-selection in Solea senegalensis fed macronutrient and challenged with dietary protein dilutions. Aquaculture 291:95–100Sáenz de Rodrigáñez M, Alarcón FJ, Martínez MI, Ruiz F, Díaz M, Moyano FJ (2005) Caracterización de las proteasas digestivas del lenguado senegalés Solea senegalensis Kaup, 1858. Bol Inst Esp Oceanog 21:95–104Sáenz de Rodrigáñez MA, Medina E, Moyano FJ, Alarcón FJ (2011) Evaluation of protein hydrolysis in raw sources by digestive proteases of Senegalese sole (Solea senegalensis, Kaup 1858) using a combination of an in vitro assay and sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis of products. Aquac Res 42:1639–1652Santigosa E, Sánchez J, Médale F, Pérez-Sánchez J, Gallardo MA (2008) Modifications of digestive enzymes in trout (Onchorynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture 252:68–74Santigosa E, Sáez de Rodigrañez MA, Rodiles A, García Barroso F, Alarcón FJ (2010) Effect of diets containing a purified soybean trypsin inhibitor on growth performance, digestive proteases and intestinal histology in juvenile sea bream (Sparus aurata L.). Aquac Res 41:187–198Sharara AI, Bouras EP, Misukonis MA, Liddle RA (1993) Evidence for indirect dietary regulation of cholecystokinin release in rats. Am J Physiol 265:G107–G112Silva JMG, Espe M, Conceição LEC, Dias J, Costas B, Valente LMP (2010) Feed intake and growth performance of Senegalese sole (Solea senegalensis Kaup, 1858) fed diets with partial replacement of fish meal with plant proteins. Aquac Res 41:e20–e30Smith LS (1980) Digestion in teleost fish. In: Smith LS (ed) Fish feed technology lectures ACDP. FAO/UNDP, Rome, pp 4–187Suárez MD, Hidalgo MC, García Galego M, Sanz A, De la Higuera M (1995) Influence of the relative proportions of the energy yielding nutrients on the liver intermediary metabolisms of the European eel. Comp Biochem Physiol A 111:421–428Sveier H, Kuamme BO, Raae AJ (2001) Growth and protein utilization in Atlantic salmon (Salmo salar L.) given a protease inhibitor in diet. Aquaculture 7:255–264Takii K, Seoka M, Nagaoka T, Kawamura K, Nakamura M, Yoshizawa H, Kumai Y (2001) Inhibitory modes of Kunitz and Bowman–Birk soybean trypsin inhibitors to tryptic and chymotryptic proteinases of tiger puffer and yellowtail. Fish Sci 67:52–57Temler RS, Dormond CA, Simon E, Morel B (1985) The effect of feeding soya bean trypsin inhibitor and repeated injections of cholecystokinin on rat pancreas. Plant Foods Hum Nutr 35:315–321Tibbetts SM, Lall SP, Milley JE (2004) Apparent digestibility of common feed ingredients by juvenile haddock, Melanogrammus aeglefinus L. Aquac Res 35:643–651Watanabe T (2002) Strategies for further development of aquatic feeds. Fish Sci 68:242–252Yúfera M, Darías MJ (2007) Changes in the gastrointestinal pH from larvae to adult in Senegal sole (Solea senegalensis). Aquaculture 267:94–9
    corecore