863 research outputs found

    Vancomycin-Loaded, Nanohydroxyapatite-Based Scaffold for Osteomyelitis Treatment: In Vivo Rabbit Toxicological Tests and In Vivo Efficacy Tests in a Sheep Model

    Get PDF
    The treatment for osteomyelitis consists of surgical debridement, filling of the dead space, soft tissue coverage, and intravenous administration of antimicrobial (AM) agents for long periods. Biomaterials for local delivery of AM agents, while providing controllable antibiotic release rates and simultaneously acting as a bone scaffold, may be a valuable alternative; thus, avoiding systemic AM side effects. V-HEPHAPC is a heparinized nanohydroxyapatite (nHA)/collagen biocomposite loaded with vancomycin that has been previously studied and tested in vitro. It enables a vancomycin-releasing profile with an intense initial burst, followed by a sustained release with concentrations above the Minimum Inhibitory Concentration (MIC) for MRSA. In vitro results have also shown that cellular viability is not compromised, suggesting that V-HEPHAPC granules may be a promising alternative device for the treatment of osteomyelitis. In the present study, V-HEPHAPC (HEPHAPC with vancomycin) granules were used as a vancomycin carrier to treat MRSA osteomyelitis. First, in vivo Good Laboratory Practice (GLP) toxicological tests were performed in a rabbit model, assuring that HEPHAPC and V-HEPHAPC have no relevant side effects. Second, V-HEPHAPC proved to be an efficient drug carrier and bone substitute to control MRSA infection and simultaneously reconstruct the bone cavity in a sheep model.This work was financed by FEDER-Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020-Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020; by Portuguese funds through FCT/MCTES in the framework of the project institute for Research and Innovation in Health Sciences (POCI-01-0145-FEDER-007274); by the Project Biotherapies (NORTE-01-0145-FEDER-000012); and by the project HEPHAPC Program RESOLVE, Norte 2020 (NORTE-01-0246-FEDER-000018). The authors would also like to acknowledge the technical support for histology and histochemical studies of Rui Fernandes and Rossana Correia and all the staff from HEMS/i3S, as well as the support of all the staff and students at the Hospital Veterinario-Universidade de Evora

    Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress

    Get PDF
    Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions

    Re-Evaluation of Sinocastor (Rodentia: Castoridae) with Implications on the Origin of Modern Beavers

    Get PDF
    The extant beaver, Castor, has played an important role shaping landscapes and ecosystems in Eurasia and North America, yet the origins and early evolution of this lineage remain poorly understood. Here we use a geometric morphometric approach to help re-evaluate the phylogenetic affinities of a fossil skull from the Late Miocene of China. This specimen was originally considered Sinocastor, and later transferred to Castor. The aim of this study was to determine whether this form is an early member of Castor, or if it represents a lineage outside of Castor. The specimen was compared to 38 specimens of modern Castor (both C. canadensis and C. fiber) as well as fossil specimens of C. fiber (Pleistocene), C. californicus (Pliocene) and the early castorids Steneofiber eseri (early Miocene). The results show that the specimen falls outside the Castor morphospace and that compared to Castor, Sinocastor possesses a: 1) narrower post-orbital constriction, 2) anteroposteriorly shortened basioccipital depression, 3) shortened incisive foramen, 4) more posteriorly located palatine foramen, 5) longer rostrum, and 6) longer braincase. Also the specimen shows a much shallower basiocciptal depression than what is seen in living Castor, as well as prominently rooted molars. We conclude that Sinocastor is a valid genus. Given the prevalence of apparently primitive traits, Sinocastor might be a near relative of the lineage that gave rise to Castor, implying a possible Asiatic origin for Castor

    Genetic Variations in IL28B and Allergic Disease in Children

    Get PDF
    Environmental changes affecting the relationship between the developing immune system and microbial exposure have been implicated in the epidemic rise of allergic disease in developed countries. While early developmental differences in T cell function are well-recognised, there is now emerging evidence that this is related to developmental differences in innate immune function. In this study we sought to examine if differences associated with innate immunity contribute to the altered immune programming recognised in allergic children. Here, we describe for the first time, the association of carriage of the T allele of the tagging single nucleotide polymorphism rs12979860 3 kb upstream of IL28B, encoding the potent innate immune modulator type III interferon lambda (IFN-λ3), and allergy in children (p = 0.004; OR 4.56). Strikingly, the association between rs12979860 genotype and allergic disease is enhanced in girls. Furthermore, carriage of the T allele at rs12979860 correlates with differences in the pro-inflammatory profile during the first five years of life suggesting this contributes to the key differences in subsequent innate immune development in children who develop allergic disease. In the context of rising rates of disease, these immunologic differences already present at birth imply very early interaction between genetic predisposition and prenatal environmental influences

    Black race as a predictor of poor health outcomes among a national cohort of HIV/AIDS patients admitted to US hospitals: a cohort study

    Get PDF
    BACKGROUND: In general, the Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) population has begun to experience the benefits of highly active antiretroviral therapy (HAART); unfortunately, these benefits have not extended equally to Blacks in the United States, possibly due to differences in patient comorbidities and demographics. These differences include rates of hepatitis B and C infection, substance use, and socioeconomic status. To investigate the impact of these factors, we compared hospital mortality and length of stay (LOS) between Blacks and Whites with HIV/AIDS while adjusting for differences in these key characteristics. METHODS: The 1996-2006 National Hospital Discharge Surveys were used to identify HIV/AIDS patients admitted to US hospitals. Survey weights were incorporated to provide national estimates. Patients < 18 years of age, those who left against medical advice, those with an unknown discharge disposition and those with a LOS < 1 day were excluded. Patients were stratified into subgroups by race (Black or White). Two multivariable logistic regression models were constructed with race as the independent variable and outcomes (mortality and LOS > 10 days) as the dependent variables. Factors that were significantly different between Blacks and Whites at baseline via bivariable statistical tests were included as covariates. RESULTS: In the general US population, there are approximately 5 times fewer Blacks than Whites. In the present study, 1.5 million HIV/AIDS hospital discharges were identified and Blacks were 6 times more likely to be hospitalized than Whites. Notably, Blacks had higher rates of substance use (30% vs. 24%; P < 0.001), opportunistic infections (27% vs. 26%; P < 0.001) and cocaine use (13% vs. 5%; P < 0.001). Conversely, fewer Blacks were co-infected with hepatitis C virus (8% vs. 12%; P < 0.001). Hepatitis B virus was relatively infrequent (3% for both groups). Crude mortality rates were similar for both cohorts (5%); however, a greater proportion of Blacks had a LOS > 10 days (21% vs. 19%; P < 0.001). Black race, in the presence of comorbidities, was correlated with a higher odds of LOS > 10 days (OR, 95% CI = 1.20 [1.10-1.30]), but was not significantly correlated with a higher odds of mortality (OR, 95% CI = 1.07 [0.93-1.25]). CONCLUSION: Black race is a predictor of LOS > 10 days, but not mortality, among HIV/AIDS patients admitted to US hospitals. It is possible that racial disparities in hospital outcomes may be closing with time

    Handcycling: training effects of a specific dose of upper body endurance training in females

    Get PDF
    Purpose: This study aims to evaluate a handcycling training protocol based on ACSM guidelines in a well-controlled laboratory setting. Training responses of a specific dose of handcycling training were quantified in a homogeneous female subject population to obtain a more in depth understanding of physiological mechanisms underlying adaptations in upper body training. Methods: 22 female able-bodied participants were randomly divided in a training (T) and control group (C). T received 7-weeks of handcycling training, 3 × 30 min/week at 65 % heart rate reserve (HRR). An incremental handcycling test was used to determine local, exercise-specific adaptations. An incremental cycling test was performed to determine non-exercise-specific central/cardiovascular adaptations. Peak oxygen uptake (peakVO2), heart rate (peakHR) and power output (peakPO) were compared between T and C before and after training. Results: T completed the training sessions at 65 ± 3 % HRR, at increasing power output (59.4 ± 8.2 to 69.5 ± 8.9 W) over the training program. T improved on handcycling peakVO2 (+18.1 %), peakPO (+31.9 %), and peakHR (+4.0 %). No improvements were found in cycling parameters. Conclusion: Handcycling training led to local, exercise-specific improvements in upper body parameters. Results could provide input for the design of effective evidence-based training programs specifically aimed at upper body endurance exercise in females

    A Unique Radiation Scheme for the Treatment of High-Grade Non-Metastatic Soft Tissue Sarcoma: The Detroit Medical Center Experience

    Get PDF
    Purpose:This is the initial report on the utilization of combined photon irradiation followed by a neutron boost irradiation for the initial management of patients with high-grade non-metastatic soft tissue sarcoma (STS). We present data on local control, complications, disease-free survival and overall survival in patients at high risk for local relapse

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
    corecore