2,761 research outputs found

    Cladding strategies for building-integrated photovoltaics

    Get PDF
    Photovoltaic cladding on the surfaces of commercial buildings has the potential for considerable reductions in carbon emissions due to embedded renewable power generation displacing conventional power utilization. In this paper, a model is described for the optimization of photovoltaic cladding densities on commercial building surfaces. The model uses a modified form of the ‘fill factor’ method for photovoltaic power supply coupled to new regression-based procedures for power demand estimation. An optimization is included based on a defined ‘mean index of satisfaction’ for matched power supply and demand (i.e., zero power exportation to the grid). The mean index of satisfaction directly translates to the reduction in carbon emission that might be expected over conventional power use. On clear days throughout the year, reductions of conventional power use of at least 60% can be achieved with an optimum cladding pattern targeted to lighting and small power load demands

    Cometary ions detected by the Cassini spacecraft 6.5 au downstream of Comet 153P/Ikeya-Zhang

    Get PDF
    During March-April 2002, while between the orbits of Jupiter and Saturn, the Cassini spacecraft detected a significant enhancement in pickup proton flux. The most likely explanation for this enhancement was the addition of protons to the solar wind by the ionization of neutral hydrogen in the corona of comet 153P/Ikeya-Zhang. This comet passed relatively close to the Sun-Cassini line during that period, allowing pickup ions to be carried to Cassini by the solar wind. This pickup proton flux could have been further modulated by the passage of the interplanetary counterparts of coronal mass ejections past the comet and spacecraft. The radial distance of 6.5 Astronomical Units (au) traveled by the pickup protons, and the implied total tail length of 7.5 au make this cometary ion tail the longest yet measured

    Noninvasive Prenatal Diagnosis for Cystic Fibrosis: Implementation, Uptake, Outcome, and Implications

    Get PDF
    BACKGROUND: Noninvasive prenatal diagnosis (NIPD) for monogenic disorders has a high uptake by families. Since 2013, our accredited public health service laboratory has offered NIPD for monogenic disorders, predominantly for de novo or paternally dominantly inherited mutations. Here we describe the extension of this service to include definitive NIPD for a recessive condition, cystic fibrosis (CF). // METHODS: Definitive NIPD for CF was developed using next-generation sequencing. Validation was performed on 13 cases from 10 families before implementation. All cases referred for CF NIPD were reviewed to determine turnaround times, genotyping results, and pregnancy outcomes. // RESULTS: Of 38 referrals, 36 received a result with a mean turnaround of 5.75 days (range, 3-11 days). Nine cases were initially inconclusive, with 3 reported unaffected because the low-risk paternal allele was inherited and 4 cases in which the high-risk paternal allele was inherited, receiving conclusive results following repeat testing. One case was inconclusive owing to a paternal recombination around the mutation site, and one case was uninformative because of no heterozygosity. Before 2016, 3 invasive referrals for CF were received annually compared with 38 for NIPD in the 24 months since offering a definitive NIPD service. // CONCLUSIONS: Timely and accurate NIPD for definitive prenatal diagnosis of CF is possible in a public health service laboratory. The method detects recombinations, and the service is well-received as evidenced by the significant increase in referrals. The bioinformatic approach is gene agnostic and will be used to expand the range of conditions tested for

    Non-Perturbative Renormalization Group for Simple Fluids

    Full text link
    We present a new non perturbative renormalization group for classical simple fluids. The theory is built in the Grand Canonical ensemble and in the framework of two equivalent scalar field theories as well. The exact mapping between the three renormalization flows is established rigorously. In the Grand Canonical ensemble the theory may be seen as an extension of the Hierarchical Reference Theory (L. Reatto and A. Parola, \textit{Adv. Phys.}, \textbf{44}, 211 (1995)) but however does not suffer from its shortcomings at subcritical temperatures. In the framework of a new canonical field theory of liquid state developed in that aim our construction identifies with the effective average action approach developed recently (J. Berges, N. Tetradis, and C. Wetterich, \textit{Phys. Rep.}, \textbf{363} (2002))

    Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis

    Get PDF
    The bacterial PorB porin, an ATP-binding beta-barrel protein of pathogenic Neisseria gonorrhoeae, triggers host cell apoptosis by an unknown mechanism. PorB is targeted to and imported by host cell mitochondria, causing the breakdown of the mitochondrial membrane potential (delta psi m). Here, we show that PorB induces the condensation of the mitochondrial matrix and the loss of cristae structures, sensitizing cells to the induction of apoptosis via signaling pathways activated by BH3-only proteins. PorB is imported into mitochondria through the general translocase TOM but, unexpectedly, is not recognized by the SAM sorting machinery, usually required for the assembly of beta-barrel proteins in the mitochondrial outer membrane. PorB integrates into the mitochondrial inner membrane, leading to the breakdown of delta psi m. The PorB channel is regulated by nucleotides and an isogenic PorB mutant defective in ATP-binding failed to induce delta psi m loss and apoptosis, demonstrating that dissipation of delta psi m is a requirement for cell death caused by neisserial infection

    Cardiorespiratory and perceptual responses to self-regulated and imposed submaximal arm-leg ergometry

    Get PDF
    Purpose: This study compared cardiorespiratory and perceptual responses to exercise using self-regulated and imposed power outputs distributed between the arms and legs. Methods Ten males (age 21.7 ± 3.4 years) initially undertook incremental arm-crank ergometry (ACE) and cycle ergometry (CYC) tests to volitional exhaustion to determine peak power output (Wpeak). Two subsequent tests involved 20-min combined arm–leg ergometry (ALE) trials, using imposed and self-regulated protocols, both of which aimed to elicit an exercising heart rate of 160 beats min−1. During the imposed trial, arm and leg intensity were set at 40% of each ergometer-specific Wpeak. During the self-regulated trial, participants were asked to self-regulate cadence and resistance to achieve the target heart rate. Heart rate (HR), oxygen uptake (V˙O2 ), pulmonary ventilation (V˙E ), and ratings of perceived exertion (RPE) were recorded continuously. Results As expected, there were no differences between imposed and self-regulated trials for HR, V˙O2 , and V˙E (all P ≥ 0.05). However, central RPE and local RPE for the arms were lower during self-regulated compared imposed trials (P ≤ 0.05). Lower RPE during the self-regulated trial was related to preferential adjustments in how the arms (33 ± 5% Wpeak) and legs (46 ± 5% Wpeak) contributed to the exercise intensity. Conclusions: This study demonstrates that despite similar metabolic and cardiovascular strain elicited by imposed and self-regulated ALE, the latter was perceived to be less strenuous, which is related to participants doing more work with the legs and less work with the arms to achieve the target intensity

    Effect of human leukocyte antigen heterozygosity on infectious disease outcome: The need for allele-specific measures

    Get PDF
    BACKGROUND: Doherty and Zinkernagel, who discovered that antigen presentation is restricted by the major histocompatibility complex (MHC, called HLA in humans), hypothesized that individuals heterozygous at particular MHC loci might be more resistant to particular infectious diseases than the corresponding homozygotes because heterozygotes could present a wider repertoire of antigens. The superiority of heterozygotes over either corresponding homozygote, which we term allele-specific overdominance, is of direct biological interest for understanding the mechanisms of immune response; it is also a leading explanation for the observation that MHC loci are extremely polymorphic and that these polymorphisms have been maintained through extremely long evolutionary periods. Recent studies have shown that in particular viral infections, heterozygosity at HLA loci was associated with a favorable disease outcome, and such findings have been interpreted as supporting the allele-specific overdominance hypothesis in humans. METHODS: An algebraic model is used to define the expected population-wide findings of an epidemiologic study of HLA heterozygosity and disease outcome as a function of allele-specific effects and population genetic parameters of the study population. RESULTS: We show that overrepresentation of HLA heterozygotes among individuals with favorable disease outcomes (which we term population heterozygote advantage) need not indicate allele-specific overdominance. On the contrary, partly due to a form of confounding by allele frequencies, population heterozygote advantage can occur under a very wide range of assumptions about the relationship between homozygote risk and heterozygote risk. In certain extreme cases, population heterozygote advantage can occur even when every heterozygote is at greater risk of being a case than either corresponding homozygote. CONCLUSION: To demonstrate allele-specific overdominance for specific infections in human populations, improved analytic tools and/or larger studies (or studies in populations with limited HLA diversity) are necessary
    • …
    corecore