979 research outputs found

    Molecular engineering of polymeric supra-amphiphiles

    Get PDF

    The exchangeability of shape

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Landmark based geometric morphometrics (GM) allows the quantitative comparison of organismal shapes. When applied to systematics, it is able to score shape changes which often are undetectable by traditional morphological studies and even by classical morphometric approaches. It has thus become a fast and low cost candidate to identify cryptic species. Due to inherent mathematical properties, shape variables derived from one set of coordinates cannot be compared with shape variables derived from another set. Raw coordinates which produce these shape variables could be used for data exchange, however they contain measurement error. The latter may represent a significant obstacle when the objective is to distinguish very similar species.</p> <p>Results</p> <p>We show here that a single user derived dataset produces much less classification error than a multiple one. The question then becomes how to circumvent the lack of exchangeability of shape variables while preserving a single user dataset. A solution to this question could lead to the creation of a relatively fast and inexpensive systematic tool adapted for the recognition of cryptic species.</p> <p>Conclusions</p> <p>To preserve both exchangeability of shape and a single user derived dataset, our suggestion is to create a free access bank of reference images from which one can produce raw coordinates and use them for comparison with external specimens. Thus, we propose an alternative geometric descriptive system that separates 2-D data gathering and analyzes.</p

    Survey of 'Fusarium' species associated with crown rot of wheat and barley in eastern Australia

    Get PDF
    'Fusarium' species associated with crown rot were isolated and identified from 409 wheat, barley or durum wheat crops from the eastern Australian grain belt between 1996 and 1999. 'Fusarium pseudograminearum' was almost the only species isolated from crops inQueensland and New South Wales. 'F. pseudograminearum' was also the most common species in Victoria and South Australia, but 'F. culmorum' was frequently isolated in these states. 'F. culmorum' accounted for more than 70% of isolates from the Victorian high rainfall (&gt;500 mm) region and the South-East region of South Australia. 'F. culmorum' comprised 18% of isolates from the Victorian medium rainfall (350-500 mm) region, and 7% of isolates from each of the Victorian low rainfall region and the Mid-North region of South Australia.'F. avenaceum', 'F. crookwellense' and 'F. graminearum' were isolated very infrequently. The proportion of 'F. culmorum' among isolates of 'Fusarium' from districts in Victoria and South Australia was strongly correlated with climatic conditions around the end of the growingseason, especially with rainfall in November

    Exoplanets and SETI

    Full text link
    The discovery of exoplanets has both focused and expanded the search for extraterrestrial intelligence. The consideration of Earth as an exoplanet, the knowledge of the orbital parameters of individual exoplanets, and our new understanding of the prevalence of exoplanets throughout the galaxy have all altered the search strategies of communication SETI efforts, by inspiring new "Schelling points" (i.e. optimal search strategies for beacons). Future efforts to characterize individual planets photometrically and spectroscopically, with imaging and via transit, will also allow for searches for a variety of technosignatures on their surfaces, in their atmospheres, and in orbit around them. In the near-term, searches for new planetary systems might even turn up free-floating megastructures.Comment: 9 page invited review. v2 adds some references and v3 has other minor additions and modification

    Accurate Bayesian segmentation of thalamic nuclei using diffusion MRI and an improved histological atlas

    Get PDF
    The human thalamus is a highly connected brain structure, which is key for the control of numerous functions and is involved in several neurological disorders. Recently, neuroimaging studies have increasingly focused on the volume and connectivity of the specific nuclei comprising this structure, rather than looking at the thalamus as a whole. However, accurate identification of cytoarchitectonically designed histological nuclei on standard in vivo structural MRI is hampered by the lack of image contrast that can be used to distinguish nuclei from each other and from surrounding white matter tracts. While diffusion MRI may offer such contrast, it has lower resolution and lacks some boundaries visible in structural imaging. In this work, we present a Bayesian segmentation algorithm for the thalamus. This algorithm combines prior information from a probabilistic atlas with likelihood models for both structural and diffusion MRI, allowing segmentation of 25 thalamic labels per hemisphere informed by both modalities. We present an improved probabilistic atlas, incorporating thalamic nuclei identified from histology and 45 white matter tracts surrounding the thalamus identified in ultra-high gradient strength diffusion imaging. We present a family of likelihood models for diffusion tensor imaging, ensuring compatibility with the vast majority of neuroimaging datasets that include diffusion MRI data. The use of these diffusion likelihood models greatly improves identification of nuclear groups versus segmentation based solely on structural MRI. Dice comparison of 5 manually identifiable groups of nuclei to ground truth segmentations show improvements of up to 10 percentage points. Additionally, our chosen model shows a high degree of reliability, with median test-retest Dice scores above 0.85 for four out of five nuclei groups, whilst also offering improved detection of differential thalamic involvement in Alzheimer’s disease (AUROC 81.98%). The probabilistic atlas and segmentation tool will be made publicly available as part of the neuroimaging package FreeSurfer

    Risk of upper gastrointestinal bleeding and perforation associated with low-dose aspirin as plain and enteric-coated formulations

    Get PDF
    BACKGROUND: The use of low-dose aspirin has been reported to be associated with an increased risk of upper gastrointestinal complications (UGIC). The coating of aspirin has been proposed as an approach to reduce such a risk. To test this hypothesis, we carried out a population based case-control study. METHODS: We identified incident cases of UGIC (bleeding or perforation) aged 40 to 79 years between April 1993 to October 1998 registered in the General Practice Research Database. Controls were selected randomly from the source population. Adjusted estimates of relative risk (RR) associated with current use of aspirin as compared to non use were computed using unconditional logistic regression. RESULTS: We identified 2,105 cases of UGIC and selected 11,500 controls. Among them, 287 (13.6%) cases and 837 (7.3%) controls were exposed to aspirin, resulting in an adjusted RR of 2.0 (1.7-2.3). No clear dose-effect was found within the range of 75-300 mg. The RR associated with enteric-coated formulations (2.3, 1.6-3.2) was similar to the one of plain aspirin (1.9, 1.6-2.3), and no difference was observed depending on the site. The first two months of treatment was the period of greater risk (RR= 4.5, 2.9-7.1). The concomitant use of aspirin with high-dose NSAIDs greatly increased the risk of UGIC (13.3, 8.5-20.9) while no interaction was apparent with low-medium doses (2.2, 1.0-4.6). CONCLUSIONS: Low-dose aspirin increases by twofold the risk of UGIC in the general population and its coating does not modify the effect. Concomitant use of low-dose aspirin and NSAIDs at high doses put patients at a specially high risk of UGIC

    Ensemble Modeling for Aromatic Production in Escherichia coli

    Get PDF
    Ensemble Modeling (EM) is a recently developed method for metabolic modeling, particularly for utilizing the effect of enzyme tuning data on the production of a specific compound to refine the model. This approach is used here to investigate the production of aromatic products in Escherichia coli. Instead of using dynamic metabolite data to fit a model, the EM approach uses phenotypic data (effects of enzyme overexpression or knockouts on the steady state production rate) to screen possible models. These data are routinely generated during strain design. An ensemble of models is constructed that all reach the same steady state and are based on the same mechanistic framework at the elementary reaction level. The behavior of the models spans the kinetics allowable by thermodynamics. Then by using existing data from the literature for the overexpression of genes coding for transketolase (Tkt), transaldolase (Tal), and phosphoenolpyruvate synthase (Pps) to screen the ensemble, we arrive at a set of models that properly describes the known enzyme overexpression phenotypes. This subset of models becomes more predictive as additional data are used to refine the models. The final ensemble of models demonstrates the characteristic of the cell that Tkt is the first rate controlling step, and correctly predicts that only after Tkt is overexpressed does an increase in Pps increase the production rate of aromatics. This work demonstrates that EM is able to capture the result of enzyme overexpression on aromatic producing bacteria by successfully utilizing routinely generated enzyme tuning data to guide model learning

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies
    corecore