
                          Jarrett-Wilkins, C., He, X., Symons, H., Harniman, R., Faul, C. FJ., &
Manners, I. (2018). Living Supramolecular Polymerisation of Perylene
Diimide Amphiphiles by Seeded Growth under Kinetic Control. Chemistry -
A European Journal. https://doi.org/10.1002/chem.201801424

Peer reviewed version

License (if available):
Other

Link to published version (if available):
10.1002/chem.201801424

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online
via Wiley at https://doi.org/10.1002/chem.201801424 . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Explore Bristol Research

https://core.ac.uk/display/195283123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1002/chem.201801424
https://doi.org/10.1002/chem.201801424
https://research-information.bris.ac.uk/en/publications/living-supramolecular-polymerisation-of-perylene-diimide-amphiphiles-by-seeded-growth-under-kinetic-control(7ad50dac-d0b1-482b-afcd-4bd80d4f1a14).html
https://research-information.bris.ac.uk/en/publications/living-supramolecular-polymerisation-of-perylene-diimide-amphiphiles-by-seeded-growth-under-kinetic-control(7ad50dac-d0b1-482b-afcd-4bd80d4f1a14).html


Supported by

A Journal of

Accepted Article

Title: Living Supramolecular Polymerisation of Perylene Diimide
Amphiphiles by Seeded Growth under Kinetic Control

Authors: Charlie Jarrett-Wilkins, Xiaoming He, Robert L. Harniman,
Charl F. J. Faul, Ian Manners, and Henry Symons

This manuscript has been accepted after peer review and appears as an
Accepted Article online prior to editing, proofing, and formal publication
of the final Version of Record (VoR). This work is currently citable by
using the Digital Object Identifier (DOI) given below. The VoR will be
published online in Early View as soon as possible and may be different
to this Accepted Article as a result of editing. Readers should obtain
the VoR from the journal website shown below when it is published
to ensure accuracy of information. The authors are responsible for the
content of this Accepted Article.

To be cited as: Chem. Eur. J. 10.1002/chem.201801424

Link to VoR: http://dx.doi.org/10.1002/chem.201801424



FULL PAPER    

 

 

 

 

 

Living Supramolecular Polymerisation of Perylene Diimide 

Amphiphiles by Seeded Growth under Kinetic Control 

Charles Jarrett-Wilkins,[a] Xiaoming He,[b] Henry E. Symons,[a] Robert L. Harniman,[a] Charl F. J. Faul,[a]* 

Ian Manners[a]* 

 

Abstract: We demonstrate the controlled solution self-assembly of 

an amphiphilic perylene diimide (PDI), with a hydrophobic perylene 

core and hydrophilic imide substituents with polydisperse 

oligo(ethyleneglycol) (OEG) tethers. It was possible, by a seeded- 

growth mechanism, to form colloidally stable, one-dimensional fibres 

with controllable lengths (from 400 to 1700 nm) and low dispersities 

(1.19-1.29) via a living supramolecular polymerisation process. 

Under the solvent conditions employed, it was found that molecularly 

dissolved material (unimer) was present in samples of the fibre-like 

supramolecular assemblies. The free unimer may be present in a 

conformationally derived kinetically trapped state and/or may 

represent a more soluble PDI fraction with longer hydrophilic tethers. 

Significantly, it was also possible to form segmented supramolecular 

block copolymers by the addition of PDI unimer to chemically distinct 

PDI seeds, yielding fibres with controlled lengths. These results 

represent a significant advance in the ability to form PDI-based 

supramolecular polymers with precisely controlled lengths and 

architectures.  

Introduction 

The ability of small molecules to hierarchically self-assemble via 

non-covalent interactions into supramolecular polymers has 

developed into an important field in materials chemistry.[1] The 

monomer units form reversible and directional bonds, producing 

supramolecular structures with defined repeat units. 

Supramolecular polymers are usually ‘dynamic’ in nature due to 

the reversible, weak non-covalent interactions between 

monomer units. This dynamic nature leads to interesting 

possibilities for application and further exploration, including self-

healing materials,[1g] transient assemblies[2] and self-replicating 

systems with the potential ability to evolve.[3]  

Supramolecular polymers can form by two main mechanisms; 

isodesmic and cooperative growth.[1a] Isodesmic growth is 

characterised by the energetically identical, reversible formation 

of a non-covalent bond at each step of the polymerisation, 

analogous to step-growth covalent polymerisation which, in 

contrast, generates ‘static’ materials. For cooperative growth, 

initial nucleus formation is more thermodynamically 

unfavourable than subsequent fibre elongation. In this case 

nuclei form slowly and elongation occurs rapidly,[1a, 1d, 1e] and, 

until full conversion, a bimodal distribution consisting of 

monomers and polymers with a high degree of polymerisation is 

maintained.[1a] This type of process is analogous to a chain-

growth covalent polymerisation. Three criteria have been 

specified[4] for distinguishing cooperative from isodesmic growth: 

(a) the supramolecular polymerisation has an associated time 

lag, (b) this lag-time can be removed by the addition of 

preformed nuclei (termed seeds) and (c) there is a critical 

temperature or concentration at which polymer elongation 

occurs.  

Perylene diimides (PDIs) have gained widespread interest as 

building blocks for supramolecular polymers via solution self-

assembly. These molecules offer attractive optoelectronic 

properties to facilitate the study of their self-assembly, easy 

chemical modification, and wide-ranging potential applications.[1f, 

5] PDIs can aggregate in a face-on-face manner via π-π and 

hydrogen-bonding interactions into spherical micelles,[6] 

vesicles,[6-7] ribbons,[8] fibres,[9] nanotubes[10] and more complex 

two-dimensional structures.[11] PDI assemblies exhibit n-type 

semiconducting behaviour, making these materials of interest for 

organic electronics and photovoltaic applications.[12] In addition, 

their co-assembly with other nanostructures is of interest for the 

formation of p–n nanoheterojunctions.[13] The ability to control 

the self-assembly of PDIs is important, as regulating the length 

and width of these fibres could impart uniform behaviour, 

increase the long-term colloidal stability, and may also provide a 

way to modulate their optoelectronic properties (as recently 

shown for block copolymer (BCP) fibre-like micelles).[14] 

Due to the tendency for small molecules to form structures that 

are dynamic in nature (i.e., where the building blocks can 

exchange between an aggregated and molecularly dissolved or 

unimeric state), there are relatively few examples of the 

controlled growth of supramolecular polymers.  By suppressing 

this dynamic nature, supramolecular polymerisations could 

potentially occur via a living mechanism under kinetic control. 

This would.be analogous to a living covalent polymerisation of 

molecular monomers in which a chain growth mechanism occurs 

with rapid initiation and no chain transfer or chain termination. 

Control over the length and architecture of supramolecular 

polymers would therefore be possible.[1h, 15] 

Over the past decade, length control of one-dimensional 

colloidal structures has been achieved by the solution self-

assembly of block copolymers (BCPs) with a crystallisable core-

forming block.[16] The use of solvents that are selective for the 

corona-forming block produces long, polydisperse fibre-like 
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micelles with crystalline cores. Sonication of these long, 

polydisperse structures causes fragmentation of the crystalline 

core and forms short seed-like micelles,[17] which can be used as 

nuclei for epitaxial growth upon addition of further unimer. The 

use of seeds allows for the slow nucleation process to be 

circumvented as the unimer can add epitaxially to the exposed 

crystal faces at the termini of the seeds. This addition leads to 

cylindrical micelles forming with controlled lengths and low 

dispersities via a process termed living crystallisation-driven self-

assembly (CDSA).[16d] The CDSA process has similarities with a 

supramolecular polymerisation as the interactions between each 

BCP within the micelle are non-covalent, directional, and 

potentially reversible, although the assemblies exist in a 

kinetically trapped state.[15c] 

Seeded- growth approaches to supramolecular polymers, i.e. 

living supramolecular polymerisation, analogous to the 

methodology developed for BCP micelles with crystalline-cores, 

has recently been successfully achieved. For example, the 

growth of supramolecular heterojunctions by the sequential 

seeded growth of chemically distinct hexabenzocoronenes has 

been demonstrated by Fukushima, Aida, and co-workers.[18] 

Sugiyasu, Takeuchi et al. have shown that the length of fibres 

formed by zinc(II) porphyrins can be controlled by adding H-

aggregate seeds into J-aggregate kinetically trapped monomer 

solutions.[19] More recently, we and the de Cola group have 

demonstrated the seeded growth of amphiphilic planar 

platinum(II) pincer complexes with controlled lengths of up to 

600 nm.[20] Other work has also shown this methodology can be 

applied to, for example, N-annulated 

perylenetetracarboxamides[21], azobenzenes,[22] protein 

nanofibrils,[23] dithiol-functionalised peptide hexamers,[3, 24] 

naphthalene diimides[25] and N-heterotriangulenes.[26] In recent 

advances, the groups of Würthner [27] and Che[28] have shown 

that a seeded growth mechanism can be used to prepare PDI-

based supramolecular fibers and nanotubes, respectively. 

However, although clear evidence for seeded growth was 

provided in each case, and length control was demonstrated in 

the case of the nanotubes, dispersities for the resulting 1D PDI 

assemblies were relatively large. In another significant 

development, Hayward and co-workers reported the seeded 

growth of PDI in the presence of poly(3-hexylthiophene), which 

allows the formation of relatively low dispersity fibers with 

lengths up to ca. 800 nm and with narrow widths due selective 

polymer adsorption to lateral crystal faces.[13c] In addition, 

several recent reports have demonstrated the formation of 

supramolecular copolymers with block structures.[29] 

In this work, we report further developments in the living 

supramolecular polymerisation of PDI-based monomers through 

the synthesis and studies of the self-assembly of a PDI species 

with polydisperse oligo(ethyleneglycol) tethers at the imide 

position. We demonstrate that seeded growth of these species 

allows the formation of PDI-based fibers with precisely controlled 

lengths and low dispersities up to ca. 1700 nm, as well as the 

formation of more complex segmented supramolecular polymers 

with controlled lengths up to ca. 1300 nm. 

Results and Discussion 

Synthesis. PDIs with OEGylated imide substituents have been 

reported to form stable nanoribbons in water.[30] In addition, the 

employment of an amide linker has been shown to allow the 

formation of intra- and inter-molecular hydrogen bonds, which 

impact the kinetics and thermodynamics for self-assembly of 

these materials.[27a] We chose to functionalise the imide position 

with polydisperse OEGylated moieties (average degree of 

polymerization = 8), introducing amphiphilicity into the molecule 

so that the imide substituent could be selectively solvated over 

the perylene core in polar solvents. An amide linkage was used 

to connect the OEGylated moiety to the perylene core, providing 

functionality capable of forming intermolecular hydrogen bonds 

between monomer units within the supramolecular polymers. 

Employing hydrogen bonds was envisioned to increase the 

Scheme 1. Synthesis of PDI-1 and PDI-2. 
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strength of interaction between the monomers and supress 

dynamic exchange within the supramolecular polymers.  

PDI-1 was synthesized by reacting methyl-3,5-

dihydroxybenzoate with tosylated-OEG monomethyl ether, 1.1 

(average degree of polymerization of the oligo(ethyleneglycol) 

tethers = 9 by MALDI ToF) to give the OEG-functionalised 

intermediate 1.2. Reaction of 1.2 with ethylene diamine 

introduced a free amine to the molecule (1.3), which could then 

be reacted with perylene-3,4,9,10-tetracarboxylic dianhydride to 

afford PDI-1 in 16% overall yield over 3 steps (Scheme 1). See 

the Supporting Information for detailed information on the 

synthesis and characterisation by 1H NMR, 13C NMR and 

MALDI-ToF mass spectroscopy. Differential scanning 

calorimetry (DSC) revealed a melt endotherm (Tm) at 142 °C on 

heating and a crystallisation exotherm (Tc) at a temperature of 

120 °C on cooling (Fig. S8), indicating that the bulk material was 

crystalline.  

 

Self-assembly of PDI-1. Initially, PDI-1 was dissolved in 

chloroform (CHCl3) to afford a solution of molecularly dissolved 

unimers as shown by UV-visible absorption spectroscopy (Fig. 

S20a, black trace), which showed characteristic peaks at 490 

and 525 nm for the non-aggregated unimers.[5a] To induce self-

assembly, an excess of isopropanol (iPrOH) was added to the 

unimer solution. iPrOH is a polar solvent, chosen to favour the 

solvation of the OEG groups over the perylene core. We chose 

to use an organic polar solvent rather than water, due to 

concerns about how using a high surface tension solvent such 

as water would affect the sonication process used later. Initially, 

a sample was prepared with a selective solvent:common solvent 

(iPrOH:CHCl3) ratio of 9:1 at 4.7 × 10-6 M. An aliquot was 

prepared for transmission electron microscopy (TEM) imaging 

by drop-casting the solution onto a carbon-coated copper grid 

and ageing to allow the solvent to evaporate. Analysis of TEM 

images revealed the formation of multi-micrometer length fibres 

(Fig. 1a and S20b and c). UV-vis absorption data was also 

collected on the sample in 9:1 iPrOH:CHCl3, which showed a 

blue shift in absorption band of ca. 5 nm and the appearance of 

a new red-shifted peak at 556 nm, which can be attributed to the 

formation of H-aggregates with rotational displacement of the 

perylene cores (Fig. S20a, red trace and S27).[5a] Comparison of 

the UV-vis absorption maximum at 525 nm for the fibre solution 

in 9:1 iPrOH:CHCl3 (Fig. S20a, red trace) and unimeric solution 

in CHCl3 at the same concentration (Fig. S20a, black trace) 

allowed us to qualitatively state that the amount of unimer was 

reduced on addition of iPrOH; however, quantitative analysis 

was not possible due to overlap of the unimer and aggregate 

peaks. Small spheres could be observed by TEM that could 

have been formed by PDI-1 unimer upon solvent evaporation; 

however, no unimer film could be detected (Fig. 1a and S20b 

and c). 

Fourier-transform infrared spectroscopy and cryoTEM were also 

carried out to investigate the importance of intramolecular H-

bonding and the structure of fibres in solution, respectively. 

However, due to the solvent system in use, neither gave clear 

information regarding the structures of the fibres (Fig. S56 & 

S57). Although solution-phase microscopy was not possible, we 

believe that the aggregation data collected from UV-vis 

experiments suggests that the fibres observed in the dried-state 

correlate well to the structures in solution. Future studies will aim 

to characterize the solution-phase structures. 

Atomic force microscopy (AFM) images of the sample on 

carbon-coated TEM grids (prepared from the same 

concentration, 4.7 × 10-6 M) were also collected. Unfortunately, 

no fibres could be detected under these conditions, however, on 

increasing the concentration to 9.4 × 10-6 M, well-dispersed 

fibres were observed, with consistent heights of ca. 3 nm (Fig. 

1b and 4). A bimodal distribution of PDI material, i.e. that fibres 

with high degrees of polymerisation form (as observed by TEM 

and AFM) while monomer remains in solution (as observed by 

UV-vis), strongly supports a cooperative growth mechanism for 

the supramolecular polymer.[31] 

Temperature-dependent UV-vis absorption spectra were 

collected to elucidate the mechanism of supramolecular 

polymerisation.[31-32] Spectra were obtained at 5 K intervals 

between 288 K and 333 K (Fig. S21) for a sample at 2.8 × 10-5 M 

in 9:1 iPrOH:CHCl3. At 288 K, broad unimer peaks at 490 and 

525 nm were detected, in addition to the aggregate peak at 556 

nm (Fig. S21, red trace).  Conversely, at 333 K, the spectrum 

showed the characteristic unimer peaks at 490 and 525 nm, with 

no aggregate peak at 556 nm (Fig. S21, black trace). However, 

the shoulder of the unimer peak at 525 nm meant that there was 

a non-zero absorbance value at 556 nm. This phenomenon 

could also be observed in the UV-vis absorption spectra of 

unimeric PDI-1 in CHCl3 at this concentration (Fig. S22).  The 

temperature-dependent UV-vis absorption spectra were 

deconvoluted in order to take into account the shoulder of the 

unimer peak at 525 nm interfering with the value for the 

aggregate peak at 556 nm (see Supporting Information for 

further details, Fig. S23-S26). The degree of aggregation (α) 

was calculated by taking the intensity of the peak at 556 nm 

after deconvolution and normalising the data.[32c] A plot of 

degree of aggregation as a function of temperature produced a 

non-sigmodal curve (Fig. S26), indicative of a cooperative 

supramolecular polymerisation. Values of the saturation 

parameter (αsat), elongation enthalpy (ΔHe) and elongation 

temperature (Te) were obtained by fitting the data for the 

elongation process at 2.8 × 10-5 M and 9.4 × 10-5 M with the 

cooperative model proposed by Smulder et al.[31, 33] (Table S1). 

Figure 1.  (a) TEM image of fibres formed at 4.7 × 10-6 M in 9:1 iPrOH:CHCl3, 

(b) AFM height image of fibres formed at 9.4 × 10-6 M in 9:1 iPrOH:CHCl3. 

Scale bars = (a) 500 nm, (b) 2000 nm. 
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At 2.8 × 10-5 M, values of –20.9 kJmol-1 and 318.8 K were 

obtained for ΔHe and Te, respectively. The calculated values of 

ΔHe and Te are significantly smaller than the values reported for 

the self-assembly of an analogous PDI monomer with alkylated 

benzyl moieties in methylcyclohexane/toluene (2:1, v/v).[27a] It is 

postulated that iPrOH is not a very poor solvent for the PDI-1 

unimer, implying that the solvophobic interactions between the 

monomer units are relatively weak within the supramolecular 

polymer.  

Ideally, the aim was to solely form the aggregated state with no 

unimer present. Concentration-dependent UV-vis absorption 

spectra were collected in the range 1.4 × 10-6 – 4.7 × 10-5 M to 

determine the concentration at which PDI-1 completely 

aggregates at room temperature (Fig. S27).  As the 

concentration of the samples was increased, the unimer peaks 

at 490 and 525 nm became broader and the aggregate peak at 

556 nm increased in intensity. The degree of aggregation was 

taken as the intensity of the aggregate peak at 556 nm relative 

to the unimer peak at 525 nm,[32c] so that the intensity difference 

between samples due to concentration could be accounted for 

(Fig. S27b). Unimer peaks were detectable up to concentrations 

of 9.4 × 10-5 M. Samples at 4.7 × 10-6 M, 2.8 × 10-5 M, 4.7 × 10-5 

M and 1.4 × 10-4 M in 9:1 iPrOH:CHCl3 were analysed by TEM. 

At 4.7 × 10-6 M, fibres were observed which were consistently of 

very narrow width, ca. 3 nm (Fig. 1a and b). This is slightly larger 

than the width of the core of PDI-1 when computationally 

modelled (ca. 2.5 nm, Fig. S9 and S10), probably as a result of 

the presence of the OEG groups. As the concentration 

increased (from 4.7 x 10-6 to 1.4 x 10-4 M), bundling of fibres 

could be observed alongside the fibres of ca. 4 nm width (Fig. 

S28).  

Alternatively, we expected that reducing the amount of common 

solvent (CHCl3) would also reduce the amount of free unimer in 

solution. As anticipated, UV-vis absorption spectroscopy showed 

a reduced intensity of unimer peaks as the CHCl3 content 

decreased (Fig. S29a). However, below 10% CHCl3 (by volume), 

thicker bundles were observed by TEM (Fig. S29c) and below 

5% CHCl3, 2D aggregates were present (Fig. S29d).  

Next, we explored the use of selective solvent mixtures of iPrOH 

and hexane (rather than using neat iPrOH) to increase the 

degree of aggregation. iPrOH and then hexane were added to 

PDI-1 unimer in CHCl3 at 4.7 × 10-5 M, to give a final 

concentration of 4.7 × 10-6 M and selective solvent 

mixture:common solvent ratio of 9:1. As hexane is a poor 

solvent for the PDI core, we envisaged that the use of a mixture 

of iPrOH and hexane would lead to a greater degree 

aggregation. UV-vis absorption spectroscopy showed a 

decrease in the intensity of the unimer peaks at 525 and 490 nm 

and an increase of the aggregate peak at 556 nm on increasing 

the hexane content (Fig. S30a). Using a 1:1 iPrOH:hexane 

selective solvent mixture, consistently thin fibres could be 

observed by AFM and TEM at 4.7 × 10-6 M (Fig. S30c, S31 and 

S32). As the hexane content in the selective solvent mixture was 

increased further, the fibres began to bundle (Fig. S30d) and 

ultimately no individual 1D structures were observed by TEM 

when 100% hexane was used as the selective solvent (Fig. 

S30e). It appears that the hydrophilic OEG moiety increased the 

solubility of the free unimer as well as stabilising the 

supramolecular polymers in 9:1 iPrOH:CHCl3. Attempts to 

reduce the solubility of the free unimer by changing the solvent 

conditions led to fibre aggregation in solution due to a reduction 

in the solubility of the OEG chains. 

For controlled growth, we envisaged that using conditions that 

yield fibres of uniform width would likely be more important than 

having a completely aggregated state. We therefore explored 

seeded growth of the fibres formed at 4.7 × 10-6 M in 9:1 

iPrOH:CHCl3. 

 

Seed formation for PDI-1. The fibres formed in 9:1 

iPrOH:CHCl3 at 4.7 × 10-6 M were polydisperse and many 

micrometres in length (Fig. 1a and b). In order to control the 

length of the fibres, a seeded-growth method analogous to the 

living CDSA approach developed for BCPs was employed.[16a, 16c, 

16d] Sonication of long, polydisperse fibres caused fragmentation 

into short seed-like fibres with an average length (Ln) of 65 nm 

and a significantly lower polydispersity index (Lw/Ln) of 1.17 (Fig. 

2a and b and S32). Seed-like fibres could be formed by placing 

a sonotrode through a septum into a vial containing the fibre 

solution at 0 °C, with the tip immersed in the solution and 

sonicating for 10 minutes. Sonication reproducibly formed seeds 

below 100 nm in length with Lw/Ln values between 1.1 and 1.25. 

The UV-vis absorption spectrum after sonication revealed a 

significant increase in the aggregate peak at 556 nm and a 

reduction in the unimer peaks (Fig. 2c), suggesting PDI-1 

molecules had been incorporated into the fibres after 

sonication.[13c]  

Figure 2. (a) TEM image and (b) AFM height image of PDI-1 seeds in 9:1 iPrOH:CHCl3 at 4.7 × 10-6 M formed by sonication for 10 minutes at 0°C using a 

sonotrode, (c) UV-vis absorption spectra of the solution before (black trace) and after sonication (red trace). Scale bars = 1000 nm, inset = 200 nm. 
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Kinetic Stability of Seeds of PDI-1. To explore the kinetic 

stability of the seeds after sonication, the seed solutions in 9:1 

iPrOH:CHCl3 were left to age and, at specific time intervals, 

aliquots were taken and imaged by TEM. Analysis of TEM 

images showed that the seed fibres increased from ca. 80 nm to 

>300 nm over 24 h (Fig. S34 and S35) and, in addition, seed 

aggregation was observed after ageing for 24 h (Fig. S35c). 

Upon sonication, the long fibres fragment into a much larger 

number of short seed-like fibres. It has previously been shown 

that for kinetically trapped cooperative supramolecular 

polymerisation, seeded growth occurs at a much faster rate than 

formation of new polymers,[19a, 27a] as it is significantly more 

favourable for unimer in solution to add to preformed aggregates 

rather than to form new nuclei. It appears that the production of 

many more nuclei in the solution, by sonication of the long fibres, 

promotes the seeded growth of free unimer and, in turn, 

increases the proportion of the aggregated state, as shown by 

UV-vis absorption spectra (Fig. 2c). Alternatively, sonication may 

cause a fraction of the molecules associated within the fibres to 

dissolve, which then re-add to the aggregates after the 

sonication process.  

 

Seeded growth of PDI-1. It has previously been demonstrated 

that for the seeded growth of BCP micelles the fibre length is 

dependent on the mass ratio of added unimer to seeds.[16a, 16d] 

Seeded growth was attempted using seeds formed by sonication 

of fibres in 9:1 iPrOH:CHCl3 at 4.7 × 10-6 M. Immediately after 

sonication the seeds were diluted in iPrOH, and PDI-1 unimer in 

CHCl3 at 4.7 × 10-5 M was added. These conditions were used 

so that the final concentration was kept constant at 4.7 × 10-6 M 

and the selective solvent:common solvent ratio was maintained 

at 9:1. We added a range of volumes of the PDI-1 unimer 

solution in CHCl3 to the seeds, so that the effect of unimer:seed 

mass ratio (Φ) on Ln could be investigated for values of Φ from 

2-10. Analysis of TEM images revealed that a linear relationship 

was observed between Φ and the Ln of the formed fibres (Fig. 

3b), indicating that the growth of PDI-1 unimer from PDI-1 seeds 

is a living supramolecular polymerisation. TEM images showed 

that there was no fibre aggregation, even when ca. 1700 nm in 

length (Fig. 3c-f). All seeded growth experiments produced 

fibres with low polydispersities between 1.19-1.29 (See Table S2 

for values of Ln, Lw, Lw/Ln and standard deviation (σ) and Fig. 

S37-S45 for TEM images and histograms detailing distribution of 

fibre lengths for each seeded growth experiment). As previously 

stated,[27a] the control over the length is expected to only be 

possible for supramolecular polymers that form by a cooperative 

growth mechanism, otherwise there would be no preference for 

the unimer to favour addition to seeds over formation of new 

polymers. 

On ageing the fibres for one month, no change in the 

morphology was observed (Fig. S46a and b), and no change in 

the UV-vis spectra occurred after 13 months (Fig. S46c). The 

supramolecular polymers were fluorescent and could be imaged 

by laser confocal scanning microscopy (LCSM). Interestingly, 

the presence of background unimer could not be detected by 

LCSM; instead, localised areas of fluorescence were observed, 

which were attributed to the supramolecular polymers (Fig. S47). 

The resolution of the images was not sufficient for 

characterisation of the aggregates and future work will focus on 

improving the experimental conditions for such investigations 

using super-resolution microscopy techniques.  

Height profiles obtained from AFM images provided a value of 

ca. 3 nm for the fibres formed by seeded growth (Fig. 4i and l), 

correlating well with that found for the fibres formed by addition 

of selective solvent to PDI-1 unimer in CHCl3 (Fig. 4c). In 

Figure 3. (a) Schematic of seeded growth of PDI-1, (b) Graph showing plot of unimer:seed mass ratio (Φ) vs. average length (Ln) for >200 fibres for 

each data point, (c)-(f) TEM images showing fibres formed by seeded growth with Φ = (c) 2, (d) 5, (e) 8 and (f) 10 in 9:1 iPrOH:CHCl3 at 4.7 × 10-6 

M. Scale bars = 2000 nm. 
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addition, height profiles along the length of the fibres showed the 

height to be consistent, with no evidence of the original seed or 

any helicity along the fibre (Fig. S48). Analysis of the widths of 

the fibres showed that there was a mixture of ca. 10 nm (Fig. 4c, 

f, i, and l blue traces) and ca. 20 nm wide fibres (Fig. 4c, f, i, and 

l red traces). This mixture of widths was found for the initial self-

assembled fibres, the seeds as well as the fibres formed by 

seeded growth. AFM height profiles show that for the wider 

fibres there was evidence of two peaks ca. 3 nm (Fig. 4c, f, i, 

and l), suggesting that raft-like structures were formed by 

bundling of the fibres.[34] Indeed, in the AFM images of the initial 

supramolecular polymers, the intertwining of two fibres could be 

observed (Fig. 4b, green circle). Interestingly, this bundling was 

not disrupted by sonication and the seeds retained the width of 

the bundled fibres. There appeared to be no unimer film present 

in either TEM or AFM images collected after seeded growth. 

It was also of interest to use higher concentration unimer 

solutions in CHCl3 for the seeded growth, so that the increase in 

volume of common solvent upon unimer addition to seed 

solutions could be kept to a minimum. Unfortunately, it was 

found that as the concentration of unimer increased from 4.7 × 

10-5 M to 4.7 × 10-4 M, the structures formed by seeded growth 

were less well defined, both in terms of width and length (Fig. 

S49).  

Seeded growth was also studied by UV-vis absorption 

spectroscopy. Spectra collected after the addition of unimer to 

the seed solution at Φ = 10 showed an increase in the intensity 

of the aggregate peak at 556 nm with a concurrent reduction in 

the unimer peaks at 490 and 525 nm (Fig. 5a). The absorbance 

of the unimer peak at 525 nm decreased after addition of unimer 

to seeds, alongside an increase in the intensity of the aggregate 

peak at 556 nm.  

The degree of aggregation was calculated by the  intensity of the 

aggregate peak at 556 nm. A normalised plot of the degree of 

aggregation against time for both seeded growth (Fig. 5b, black 

squares) and addition of PDI-1 unimer in CHCl3 to iPrOH with no 

seeds present (Fig. 5b, red circles) revealed that the rate of 

aggregation was much greater when seeds were present. This 

result clearly indicates that the seeds acted as sites for unimer 

addition, removing the unfavourable nucleation step and leading 

to control over the length of structures formed. The elimination of 

the lag-time of supramolecular polymerisation upon addition of 

seeds supports the assertion that the growth occurred by a 

cooperative mechanism.  

 

Accounting for discrepancy between theoretical and 

experimental fibre length. TEM analysis of the fibres formed by 

seeded growth revealed that the Ln for each sample was much 

higher than that expected from the seed length (Ls) and Φ (Eq. 

1). Ls was calculated by measuring over 200 seeds from multiple 

TEM images of samples drop-cast immediately after sonication. 

Φ was calculated theoretically prior to the seeded growth 

experiment. 

 

𝐿𝑛 =  𝐿𝑠(1 + 𝛷) 

 

As has already been discussed, the UV-vis absorption data 

showed that, in 9:1 iPrOH:CHCl3, not all the PDI-1 molecules 

aggregate into supramolecular polymers and a significant 

amount remained as unimer.  Previously it has been reported 

that PDI molecules with an amide linker between the PDI core 

and benzyl moiety can undergo intramolecular hydrogen-

bonding to kinetically trap the monomer.[27a] It is possible that 

this kinetic trapping partially accounts for the large amount of 

unimer still present, however, we believe that the very low 

concentrations employed here may also explain the presence of 

free unimer. In addition, as the OEG chains have a distribution 

of lengths, PDIs decorated with longer chains would be better 

solvated and less likely to aggregate. 

Figure 4. (a) 3D AFM image of fibres of PDI-1 in 9:1 iPrOH:CHCl¬3, (b) 2D 

AFM height image of fibres, (c) Height profiles of fibres, (d) 3D AFM image of 

seeds of PDI-1 in 9:1 iPrOH:CHCl¬3, (e) 2D AFM height image of seeds, (f) 

Height profiles of seeds, (g) 3D AFM image of fibres formed by seeded growth 

at Φ = 2 of PDI-1 in 9:1 iPrOH:CHCl¬3, (h) 2D AFM height image of fibres 

formed by seeded growth at Φ = 2, (i) Height profiles of fibres formed by 

seeded growth at Φ = 2, (j) 3D AFM image of fibres formed by seeded growth 

at Φ = 9 of PDI-1 in 9:1 iPrOH:CHCl¬3, (k) 2D AFM height image of fibres 

formed by seeded growth at Φ = 9, (l) Height profiles of fibres formed by 

seeded growth at Φ = 9. Scale bars in b, e, h and k = 500 nm. 

Figure 5. (a) UV-vis absorption spectra collected over 240 minutes after 

addition of PDI-1 unimer to PDI-1 seeds in 9:1 iPrOH:CHCl3, (b) normalised 

plot of degree of aggregation of PDI-1 unimer upon addition to iPrOH with 

(black squares) and without (red circles) the presence of PDI-1 seeds. 
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After sonication, an increase in the length of the seeds, from ca. 

80 nm to ca. 200 nm, occurred on ageing for 240 minutes (Fig. 

S34 and S35), which we attributed to growth of free unimer. We 

then proceeded to investigate whether seeds that had been 

aged better matched theoretical Ls values from seeded growth 

experiments (Fig. 3). Theoretical Ls values were calculated from 

Eq. 1 using known values of Ln and Φ. The green bars in Fig. 6b 

show values of Ls measured from seed ageing experiments (see 

also Fig. S34) compared with the theoretical values from seeded 

growth experiments at each value of Φ (red bars). We found that 

seeds aged for 60 minutes had the closest match to the average 

theoretical Ls (dashed orange line). The fact that the increase in 

Ls on ageing matches well with the theoretical Ls supports the 

argument that unimer present in the solution added to the seeds 

upon ageing, leading to an increase in Ls. This subsequently 

caused the fibres formed by seeded growth to be longer than 

expected. 

The seeded growth experiments described above were also 

carried out using a selective solvent mixture of 1:1 

iPrOH:hexane (rather than iPrOH in the iPrOH/CHCl3 system 

discussed above). It was found that controlled growth of fibres 

was possible using this selective solvent mixture, however, the 

polydispersity of the fibres formed by seeded growth was higher, 

with values ranging from 1.27-1.65, (see Table S3 for values of 

Ln, Lw, Lw/Ln and standard deviation (σ), Fig. S50 for plot of Ln vs 

Φ, Fig. S51 for TEM images of fibres formed in each seeded 

growth experiment and Fig. S52 for histograms detailing 

distribution of fibre lengths for each seeded growth experiment).  

 

Formation of segmented fibres. In an attempt to access more 

complex supramolecular architectures, a second PDI with vinyl-

terminated OEG chains, PDI-2, was synthesised (Scheme 1). 

We followed the same synthetic route as for PDI-1 after initially 

functionalising one end of a OEG chain with a vinyl moiety. Vinyl 

groups were introduced at the OEG chain termini with the aim 

Figure 6. (a) Schematic of a PDI-1 fibre formed by seeded growth indicating 

the length of seed (Ls) and length of fibre (Ln), (b) Graph showing theoretical 

values of Ls calculated using known Ln and Φ values from seeded growth 

experiments (red bars), the average theoretical Ls (dashed orange line) and 

Ls values for seeds aged for different lengths of time (green bars). 

Figure 7. (a) Schematic depicting seeded growth of PDI-1 unimer from PDI-2 seeds, (b) graph showing plot of unimer:seed mass ratio (Φ) vs. 

average length (Ln), (c)-(e) TEM images showing fibres formed by seeded growth with Φ = (c) 1, (d) 3 and (e) 5 in 10:5:2 iPrOH:hexane:CHCl3. Scale 

bars = 2000 nm. 
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that, on formation of supramolecular block co-polymers, staining 

of the vinyl groups or coordination of nanoparticles could be 

employed to distinguish the blocks.  

The supramolecular polymerisation of PDI-2 gave well-dispersed 

fibres with consistent widths (Fig. S53) at concentrations of 1.4 × 

10-5 M in 9:9:2 iPrOH:hexane:CHCl3 (as opposed to self-

assembly of PDI-1 at 4.7 × 10-6 M in 9:1 iPrOH:CHCl3). The vinyl 

group at the termini of the OEG chains appeared to increase the 

solubility of PDI-2 in iPrOH and meant self-assembled structures 

only formed at higher concentration in mixtures of iPrOH and 

hexane. These fibres could be sonicated using the same 

conditions as for PDI-1 to give seeds with an Ln of 126 nm and a 

Lw/Ln value of 1.29.  

PDI-2 seeds in 9:9:2 iPrOH:hexane:CHCl3 were diluted in 3:1 

iPrOH:hexane, followed by the addition of PDI-1 unimer at 4.7 × 

10-5 M in CHCl3, thus forming triblock supramolecular polymers. 

This approach led to fibres with well-controlled lengths (from ca. 

300 to 1320 nm), relatively low polydispersities (1.26-1.38) and 

consistent widths (Fig. 7c-e), similar to those seen for the 

seeded growth of PDI-1 unimer from PDI-1 seeds (see Table S4 

for values of Ln, Lw, Lw/Ln and standard deviation (σ) and Fig. 

S55 for histograms detailing distribution of fibre lengths for each 

seeded growth experiment). Again, there was a linear 

relationship between the Ln of the fibres and Φ (Fig. 7b), 

showing that the seeded growth is a living process. Control 

experiments where PDI-2 seeds were diluted in 3:1 

iPrOH:hexane showed no fibres by TEM after ageing overnight. 

The seeded growth of PDI-1 unimer from PDI-2 seeds was also 

characterised by UV-vis absorption spectroscopy (Fig. 8).  

Upon sonication of the fibres, there was a small decrease in the 

intensity of the unimer peaks, however a significant increase in 

the aggregate peak at 556 nm was apparent (Fig. 8a). On 

ageing of the seeded growth experiment for 1380 minutes, there 

was a reduction in the intensity of the unimer peaks (Fig. 8b), 

implying that PDI-1 unimer added to and grew from the PDI-2 

seeds. Both the reduction in amount of PDI-1 unimer, as well as 

the controlled structures formed during the seeded growth 

experiments (Fig. 7b-e) provide strong evidence that segmented 

block supramolecular polymers are forming due to the addition 

of PDI-1 unimer from PDI-2 seeds.  

Due to the similarity in chemical structure of the two PDI 

molecules, it was not possible to resolve the different blocks by 

TEM. Selective staining of the vinyl groups with osmium 

tetroxide, as well as interactions of the vinyl groups with metal 

salts and nanoparticles, was attempted. Unfortunately, the 

segments could not be distinguished by TEM or energy-

dispersive X-ray spectroscopy. We believe that the number of 

reactive vinyl groups was too low for successful characterisation 

of the supramolecular block copolymers and future work will 

attempt to incorporate a higher density of vinyl (or other 

functional) moieties into the structure of PDI-2, for facile 

differentiation of the blocks.  

Conclusions 

We have shown the seeded growth, living CDSA method 

developed for BCP micelles with crystalline cores can be applied 

to a PDI supramolecular polymer to form fibres with control over 

the length. In the case of PDI-1, fibres of up to ca. 1700 nm can 

be formed with a relatively low dispersity in length (1.19-1.29). 

We believe this is the first report of the seeded growth of PDIs to 

form supramolecular polymers with precise control over their 

lengths which show no signs of bundling. Significantly, there was 

a linear relationship between Ln and Φ, indicating that the 

seeded growth of the supramolecular polymers was a living 

process. Temperature-dependent UV-vis absorption spectra 

indicated PDI-1 formed supramolecular polymers by a 

cooperative growth mechanism, which was supported by (a) a 

bimodal distribution of supramolecular polymers with a high 

degree of polymerisation and free unimer in the sample of self-

assembled fibres, (b) the removal of the lag time for 

polymerisation upon addition of seeds and (c) the ability to 

control the length of the fibres by a seeded growth mechanism. 
UV-vis absorption data showed that after addition of selective 

solvent to PDI-1 unimer solution both the unimeric species and 

aggregated species were present. We believe the presence of 

free unimer in the aggregate solution may have been due to 

either kinetic trapping of the monomers, the very low 

concentrations employed for self-assembly (i.e., concentrations 

close the onset of aggregation) or the polydispersity in the 

lengths of the OEG chains. We have shown that the amount of 

unimer present could be modulated by either the content of 

common solvent or the selective solvent mixture. This alteration 

of the solvent system had a significant effect on the morphology 

of the supramolecular polymers. 

We also observed that the amount of PDI-1 material in the 

aggregated state increased after sonication. This increase was 

attributed to the sonication causing fragmentation of the long 

fibres, increasing the number of nuclei to which free unimer in 

the seed solution was able to add. This process had a significant 

impact on the kinetic stability of seeds and the length of fibres 

formed by seeded growth.  

Finally, we reported the formation of more complex segmented 

supramolecular block copolymers by the addition of PDI-1 

monomers to chemically distinct seeds formed from PDI-2. 

Characterisation to distinguish the segments of the 

supramolecular block copolymers has not been possible to date. 

However, further work is in progress to expand and exploit this 

approach to produce chemically distinct functional block-like 

supramolecular structures for applications in optoelectronics, 

heterojunctions and to form hierarchically ordered 

supramolecular materials.  

Experimental Section 

Figure 4. (a) UV-vis absorption spectra of unimeric PDI-2 in CHCl3 at 1.4 × 

10-5 M (black trace) and PDI-2 in 9:9:2 iPrOH:hexane:CHCl3 at 1.4 × 10-5 M 

before (red trace) and after (blue trace) sonication, (b) UV-vis absorption 

spectra collected over 240 minutes after addition of PDI-1 unimer to PDI-2 

seeds in 10:5:2 iPrOH:hexane:CHCl3. 
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Formation of PDI-1 fibres 

PDI-1 was dissolved in CHCl3 at 4.7 × 10-5 M to give a bright orange 
solution. To a 100 μL aliquot was added 900 μL of iPrOH. The solution 
was aged for several days at room temperature. A 10 μL aliquot was 
drop cast on a carbon-coated copper grid.  
 

PDI-1 Seed formation 

A 7 mL vial containing 1 mL of fibres in 9:1 iPrOH:CHCl3 at 4.7 × 10-6 M 
was capped with a septum and sonicated for 10 minutes at 0 °C using a 
sonotrode. 
 

Seeded growth of PDI-1 fibres 

1 μg of seed solution (Ln = 61 nm, Lw/Ln = 1.24) in 100 µL 9:1 
iPrOH:CHCl3 was diluted in iPrOH and then (a) 2 μg, (b) 3 μg, (c) 4 μg, 
(d) 5 μg, (e) 6 μg, (f) 7 μg, (g) 8 μg, (h) 9 μg and (i) 10 μg of PDI-1 in 
CHCl3 at 4.7 × 10-5 M was added. The solutions were shaken and left to 
age for 24 h at room temperature. Multiple TEM images were obtained 
and the lengths of the fibres were measured for 200-220 fibres. Sample 
(i) was carried out in a cuvette and UV-vis absorption spectra were 
collected every 5 minutes for 60 minutes and then every 20 minutes for 
1380 minutes. 
 
Full experimental procedures, characterisation for all new compounds 
and copies of 1H, 13C NMR and MALDI ToF spectra are provided in the 
Supporting Information. 
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We demonstrate the controlled 

solution self-assembly of an 

amphiphilic perylene diimide, with a 

hydrophobic perylene core and 

hydrophilic imide substituents with 

polydisperse oligo(ethyleneglycol) 

tethers. It was possible, by a 

seeded-growth mechanism, to form 

colloidally stable, one-dimensional 

fibres with controllable lengths and 

low dispersities. 

 

 

 
Charles Jarrett-Wilkins, Xiaoming He, 

Henry E. Symons, Robert L. Harniman, 

Charl F. J. Faul, * Ian Manners* 

Page No. – Page No. 

Living Supramolecular Polymerisation 

of Perylene Diimide Amphiphiles by 

Seeded Growth under Kinetic Control 

 

 

  

 

[a] Title(s), Initial(s), Surname(s) of Author(s) including Corresponding 

Author(s) 

Department 

Institution 

Address 1 

E-mail:  

[b] Title(s), Initial(s), Surname(s) of Author(s) 

Department 

Institution 

Address 2 

 Supporting information for this article is given via a link at the end of 

the document.((Please delete this text if not appropriate)) 

10.1002/chem.201801424

A
cc

ep
te

d 
M

an
us

cr
ip

t

Chemistry - A European Journal

This article is protected by copyright. All rights reserved.


