155 research outputs found

    Acquisition of growth-inhibitory antibodies against blood-stage Plasmodium falciparum

    Get PDF
    Background Antibodies that inhibit the growth of blood-stage Plasmodium falciparum may play an important role in acquired and vaccine-induced immunity in humans. However, the acquisition and activity of these antibodies is not well understood. Methods We tested dialysed serum and purified immunoglobulins from Kenyan children and adults for inhibition of P. falciparum blood-stage growth in vitro using different parasite lines. Serum antibodies were measured by ELISA to blood-stage parasite antigens, extracted from P. falciparum schizonts, and to recombinant merozoite surface protein 1 (42 kDa C-terminal fragment, MSP1-42). Results Antibodies to blood-stage antigens present in schizont protein extract and to recombinant MSP1-42 significantly increased with age and were highly correlated. In contrast, growth-inhibitory activity was not strongly associated with age and tended to decline marginally with increasing age and exposure, with young children demonstrating the highest inhibitory activity. Comparison of growth-inhibitory activity among samples collected from the same population at different time points suggested that malaria transmission intensity influenced the level of growth-inhibitory antibodies. Antibodies to recombinant MSP1-42 were not associated with growth inhibition and high immunoglobulin G levels were poorly predictive of inhibitory activity. The level of inhibitory activity against different isolates varied. Conclusions Children can acquire growth-inhibitory antibodies at a young age, but once they are acquired they do not appear to be boosted by on-going exposure. Inhibitory antibodies may play a role in protection from early childhood malaria

    Individual variation in levels of haptoglobin-related protein in children from Gabon

    Get PDF
    Background: Haptoglobin related protein (Hpr) is a key component of trypanosome lytic factors (TLF), a subset of highdensity lipoproteins (HDL) that form the first line of human defence against African trypanosomes. Hpr, like haptoglobin (Hp) can bind to hemoglobin (Hb) and it is the Hpr-Hb complexes which bind to these parasites allowing uptake of TLF. This unique form of innate immunity is primate-specific. To date, there have been no population studies of plasma levels of Hpr, particularly in relation to hemolysis and a high prevalence of ahaptoglobinemia as found in malaria endemic areas. Methods and Principal Findings: We developed a specific enzyme-linked immunosorbent assay to measure levels of plasma Hpr in Gabonese children sampled during a period of seasonal malaria transmission when acute phase responses (APR), malaria infection and associated hemolysis were prevalent. Median Hpr concentration was 0.28 mg/ml (range 0.03-1.1). This was 5-fold higher than that found in Caucasian children (0.049 mg/ml, range 0.002-0.26) with no evidence of an APR. A general linear model was used to investigate associations between Hpr levels, host polymorphisms, parasitological factors and the acute phase proteins, Hp, C-reactive protein (CRP) and albumin. Levels of Hpr were associated with Hp genotype, decreased with age and were higher in females. Hpr concentration was strongly correlated with that of Hp, but not CRP

    Impact of Plasmodium falciparum infection on the frequency of moderate to severe anaemia in children below 10 years of age in Gabon

    Get PDF
    BACKGROUND: Improving the understanding of childhood malarial anaemia may help in the design of appropriate management strategies. METHODS: A prospective observational study over a two-year period to assess the burden of anaemia and its relationship to Plasmodium falciparum infection and age was conducted in 8,195 febrile Gabonese children. RESULTS: The proportion of children with anaemia was 83.6% (n = 6830), higher in children between the ages of six and 23 months. Those under three years old were more likely to develop moderate to severe anaemia (68%). The prevalence of malaria was 42.7% and P. falciparum infection was more frequent in children aged 36-47 months (54.5%). The proportion of anaemic children increased with parasite density (p 60%), but was unrelated to P. falciparum parasitaemia. CONCLUSION: Malaria is one of the main risk factors for childhood anaemia which represents a public health problem in Gabon. The risk of severe malarial anaemia increases up the age of three years. Efforts to improve strategies for controlling anaemia and malaria are needed

    A Phase 1 Trial of MSP2-C1, a Blood-Stage Malaria Vaccine Containing 2 Isoforms of MSP2 Formulated with Montanide® ISA 720

    Get PDF
    Background: In a previous Phase 1/2b malaria vaccine trial testing the 3D7 isoform of the malaria vaccine candidate Merozoite surface protein 2 (MSP2), parasite densities in children were reduced by 62%. However, breakthrough parasitemias were disproportionately of the alternate dimorphic form of MSP2, the FC27 genotype. We therefore undertook a dose-escalating, double-blinded, placebo-controlled Phase 1 trial in healthy, malaria-naïve adults of MSP2-C1, a vaccine containing recombinant forms of the two families of msp2 alleles, 3D7 and FC27 (EcMSP2-3D7 and EcMSP2-FC27), formulated in equal amounts with Montanide® ISA 720 as a water-in-oil emulsion. Methodology/Principal Findings: The trial was designed to include three dose cohorts (10, 40, and 80 μg), each with twelve subjects receiving the vaccine and three control subjects receiving Montanide® ISA 720 adjuvant emulsion alone, in a schedule of three doses at 12-week intervals. Due to unexpected local reactogenicity and concern regarding vaccine stability, the trial was terminated after the second immunisation of the cohort receiving the 40 μg dose; no subjects received the 80 μg dose. Immunization induced significant IgG responses to both isoforms of MSP2 in the 10 μg and 40 μg dose cohorts, with antibody levels by ELISA higher in the 40 μg cohort. Vaccine-induced antibodies recognised native protein by Western blots of parasite protein extracts and by immunofluorescence microscopy. Although the induced anti-MSP2 antibodies did not directly inhibit parasite growth in vitro, IgG from the majority of individuals tested caused significant antibody-dependent cellular inhibition (ADCI) of parasite growth. Conclusions/Significance: As the majority of subjects vaccinated with MSP2-C1 developed an antibody responses to both forms of MSP2, and that these antibodies mediated ADCI provide further support for MSP2 as a malaria vaccine candidate. However, in view of the reactogenicity of this formulation, further clinical development of MSP2-C1 will require formulation of MSP2 in an alternative adjuvant. Trial Registration: Australian New Zealand Clinical Trials Registry 12607000552482

    Ferritin immobilization on patterned poly(2-hydroxyethyl methacrylate) brushes on silicon surfaces from colloid system

    Get PDF
    In this paper, we describe a graft polymerization/solvent immersion method for generating poly(2-hydroxyethyl methacrylate) (PHEMA) brushes in various patterns. We used a novel fabrication process, involving very-large-scale integration and oxygen plasma treatment, to generate well-defined patterns of polymerized PHEMA on patterned Si(100) surfaces. We observed brush- and mushroom-like regions for the PHEMA brushes, with various pattern resolutions, after immersing wafers presenting lines of these polymers in MeOH and n-hexane, respectively. The interaction between PHEMA and ferritin protein sheaths in MeOH and n-hexane (good and poor solvent for PHEMA, respectively) was used to capture and release ferritins from fluidic system. The “tentacles” behaver for PHEMA brushes was found through various solvents in fluidic system. Using high-resolution scanning electron microscopy, we observed patterned ferritin Fe cores on the Si surface after pyrolysis of the patterned PHEMA brushes and ferritin protein sheaths, which verify the “tentacles” behaver for PHEMA brushes

    Antibody levels to multiple malaria vaccine candidate antigens in relation to clinical malaria episodes in children in the Kasena-Nankana district of Northern Ghana

    Get PDF
    BACKGROUND: Considering the natural history of malaria of continued susceptibility to infection and episodes of illness that decline in frequency and severity over time, studies which attempt to relate immune response to protection must be longitudinal and have clearly specified definitions of immune status. Putative vaccines are expected to protect against infection, mild or severe disease or reduce transmission, but so far it has not been easy to clearly establish what constitutes protective immunity or how this develops naturally, especially among the affected target groups. The present study was done in under six year old children to identify malaria antigens which induce antibodies that correlate with protection from Plasmodium falciparum malaria. METHODS: In this longitudinal study, the multiplex assay was used to measure IgG antibody levels to 10 malaria antigens (GLURP R0, GLURP R2, MSP3 FVO, AMA1 FVO, AMA1 LR32, AMA1 3D7, MSP1 3D7, MSP1 FVO, LSA-1and EBA175RII) in 325 children aged 1 to 6 years in the Kassena Nankana district of northern Ghana. The antigen specific antibody levels were then related to the risk of clinical malaria over the ensuing year using a negative binomial regression model. RESULTS: IgG levels generally increased with age. The risk of clinical malaria decreased with increasing antibody levels. Except for FMPOII-LSA, (p = 0.05), higher IgG levels were associated with reduced risk of clinical malaria (defined as axillary temperature ≥37.5°C and parasitaemia of ≥5000 parasites/ul blood) in a univariate analysis, upon correcting for the confounding effect of age. However, in a combined multiple regression analysis, only IgG levels to MSP1-3D7 (Incidence rate ratio = 0.84, [95% C.I.= 0.73, 0.97, P = 0.02]) and AMA1 3D7 (IRR = 0.84 [95% C.I.= 0.74, 0.96, P = 0.01]) were associated with a reduced risk of clinical malaria over one year of morbidity surveillance. CONCLUSION: The data from this study support the view that a multivalent vaccine involving different antigens is most likely to be more effective than a monovalent one. Functional assays, like the parasite growth inhibition assay will be necessary to confirm if these associations reflect functional roles of antibodies to MSP1-3D7 and AMA1-3D7 in this population

    Measurement of the plasma levels of antibodies against the polymorphic vaccine candidate apical membrane antigen 1 in a malaria-exposed population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Establishing antibody correlates of protection against malaria in human field studies and clinical trials requires, amongst others, an accurate estimation of antibody levels. For polymorphic antigens such as apical membrane antigen 1 (AMA1), this may be confounded by the occurrence of a large number of allelic variants in nature.</p> <p>Methods</p> <p>To test this hypothesis, plasma antibody levels in an age-stratified cohort of naturally exposed children from a malaria-endemic area in Southern Ghana were determined by indirect ELISA. Titres against four single <it>Pf</it>AMA1 alleles were compared with those against three different allele mixtures presumed to have a wider repertoire of epitope specificities. Associations of antibody levels with the incidence of clinical malaria as well as with previous exposure to parasites were also examined.</p> <p>Results</p> <p>Antibody titres against <it>Pf</it>AMA1 alleles generally increased with age/exposure while antibody specificity for <it>Pf</it>AMA1 variants decreased, implying that younger children (≤ 5 years) elicit a more strain-specific antibody response compared to older children. Antibody titre measurements against the FVO and 3D7 AMA1 alleles gave the best titre estimates as these varied least in pair-wise comparisons with titres against all <it>Pf</it>AMA1 allele mixtures. There was no association between antibody levels against any capture antigen and either clinical malaria incidence or parasite density.</p> <p>Conclusions</p> <p>The current data shows that levels of naturally acquired antigen-specific antibodies, especially in infants and young children, are dependent on the antigenic allele used for measurement. This may be relevant to the interpretation of antibody titre data from measurements against single <it>Pf</it>AMA1 alleles, especially in studies involving infants and young children who have experienced fewer infections.</p

    Estimating Individual Exposure to Malaria Using Local Prevalence of Malaria Infection in the Field

    Get PDF
    BACKGROUND: Heterogeneity in malaria exposure complicates survival analyses of vaccine efficacy trials and confounds the association between immune correlates of protection and malaria infection in longitudinal studies. Analysis may be facilitated by taking into account the variability in individual exposure levels, but it is unclear how exposure can be estimated at an individual level. METHOD AND FINDINGS: We studied three cohorts (Chonyi, Junju and Ngerenya) in Kilifi District, Kenya to assess measures of malaria exposure. Prospective data were available on malaria episodes, geospatial coordinates, proximity to infected and uninfected individuals and residence in predefined malaria hotspots for 2,425 individuals. Antibody levels to the malaria antigens AMA1 and MSP1(142) were available for 291 children from Junju. We calculated distance-weighted local prevalence of malaria infection within 1 km radius as a marker of individual's malaria exposure. We used multivariable modified Poisson regression model to assess the discriminatory power of these markers for malaria infection (i.e. asymptomatic parasitaemia or clinical malaria). The area under the receiver operating characteristic (ROC) curve was used to assess the discriminatory power of the models. Local malaria prevalence within 1 km radius and AMA1 and MSP1(142) antibodies levels were independently associated with malaria infection. Weighted local malaria prevalence had an area under ROC curve of 0.72 (95%CI: 0.66-0.73), 0.71 (95%CI: 0.69-0.73) and 0.82 (95%CI: 0.80-0.83) among cohorts in Chonyi, Junju and Ngerenya respectively. In a small subset of children from Junju, a model incorporating weighted local malaria prevalence with AMA1 and MSP1(142) antibody levels provided an AUC of 0.83 (95%CI: 0.79-0.88). CONCLUSION: We have proposed an approach to estimating the intensity of an individual's malaria exposure in the field. The weighted local malaria prevalence can be used as individual marker of malaria exposure in malaria vaccine trials and longitudinal studies of natural immunity to malaria
    corecore