22 research outputs found

    Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to 300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m 2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Characterization of triterpenoid profiles and triterpene synthase expression in the leaves of eight Vitis vinifera cultivars grown in the Upper Rhine Valley

    No full text
    International audiencePlant triterpenoids are a diverse group of secondary metabolites with wide distribution, high chemical diversity and interesting pharmacological and antimicrobial properties. The first step in the biosynthesis of all triterpenoids is the cyclization of the 2,3-oxidosqualene precursor, catalyzed by oxidosqualene cyclases (OSCs), which have characteristic product specificities. Biosynthesis and functions of pentacyclic triterpenes have been poorly studied in grapevine. In this study, we first investigated the profile of triterpenoids present in leaf cuticular waxes from eight Vitis vinifera cultivars cultivated in the Upper Rhine Valley. Further quantification of triterpenoids showed that these cultivars can be divided into two groups, characterized by high levels of lupeol (e.g., Pinot noir) or taraxerol (e.g., Gewurztraminer) respectively. We further analyzed the OSC family involved in the synthesis of pentacyclic triterpenes (called VvTTPSs) in the sequenced V. vinifera 40024 genome and found nine genes with similarity to previously characterized triterpene synthases. Phylogenetic analysis further showed that VvTTPS1-VvTTPS3 and VvTTPS5-VvTTPS9 belong to the beta-amyrin synthase and multifunctional triterpene synthase clade, whereas VvTTPS10 belongs to the lupeol synthase clade. We studied the expression of several members of the VvTTPS family following biotic and abiotic stresses in V. vinifera 40024 as well as in the eight healthy cultivars. This study further revealed that one candidate gene, VvTTPS5, which does not belong to the lupeol synthase clade, is highly expressed in lupeol-rich cultivars. VvTTPS3, VvTTPS5, VvTTPS6, VvTTPS7 and VvTTPS10 were highly upregulated by UV stress, but only VvTTPS3, VvTTPS5, VvTTPS6 and VvTTPS10 were upregulated following downy mildew and gray mold infections respectively. These results suggest differential roles of VvTTPS against environmental stresses in grape leaves
    corecore