172 research outputs found

    SIMcheck:A toolbox for successful super-resolution structured illumination microscopy

    Get PDF
    Three-dimensional structured illumination microscopy (3D-SIM) is a versatile and accessible method for super-resolution fluorescence imaging, but generating high-quality data is challenging, particularly for non-specialist users. We present SIMcheck, a suite of ImageJ plugins enabling users to identify and avoid common problems with 3D-SIM data and assess resolution and data quality through objective control parameters. Additionally, SIMcheck provides advanced calibration tools and utilities for common image processing tasks. This open-source software is applicable to all commercial and custom platforms and will promote routine application of super-resolution SIM imaging in cell biology

    Aggregation Bias: A Proposal to Raise Awareness Regarding Inclusion in Visual Analytics

    Get PDF
    Data is a powerful tool to make informed decisions. They can be used to design products, to segment the market, and to design policies. However, trusting so much in data can have its drawbacks. Sometimes a set of indicators can conceal the reality behind them, leading to biased decisions that could be very harmful to underrepresented individuals, for example. It is challenging to ensure unbiased decision-making processes because people have their own beliefs and characteristics and be unaware of them. However, visual tools can assist decision-making processes and raise awareness regarding potential data issues. This work describes a proposal to fight biases related to aggregated data by detecting issues during visual analysis and highlighting them, trying to avoid drawing inaccurate conclusions

    Probabilistic sophistication and reverse Bayesianism

    Full text link
    This paper extends our earlier work on reverse Bayesianism by relaxing the assumption that decision makers abide by expected utility theory, assuming instead weaker axioms that merely imply that they are probabilistically sophisticated. We show that our main results, namely, (modified) representation theorems and corresponding rules for updating beliefs over expanding state spaces and null events that constitute “reverse Bayesianism,” remain valid

    Comparison of Statistical Population Reconstruction Using Full and Pooled Adult Age-Class Data

    Get PDF
    BACKGROUND: Age-at-harvest data are among the most commonly collected, yet neglected, demographic data gathered by wildlife agencies. Statistical population construction techniques can use this information to estimate the abundance of wild populations over wide geographic areas and concurrently estimate recruitment, harvest, and natural survival rates. Although current reconstruction techniques use full age-class data (0.5, 1.5, 2.5, 3.5, … years), it is not always possible to determine an animal's age due to inaccuracy of the methods, expense, and logistics of sample collection. The ability to inventory wild populations would be greatly expanded if pooled adult age-class data (e.g., 0.5, 1.5, 2.5+ years) could be successfully used in statistical population reconstruction. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the performance of statistical population reconstruction models developed to analyze full age-class and pooled adult age-class data. We performed Monte Carlo simulations using a stochastic version of a Leslie matrix model, which generated data over a wide range of abundance levels, harvest rates, and natural survival probabilities, representing medium-to-big game species. Results of full age-class and pooled adult age-class population reconstructions were compared for accuracy and precision. No discernible difference in accuracy was detected, but precision was slightly reduced when using the pooled adult age-class reconstruction. On average, the coefficient of variation (i.e., SE(θ)/θ) increased by 0.059 when the adult age-class data were pooled prior to analyses. The analyses and maximum likelihood model for pooled adult age-class reconstruction are illustrated for a black-tailed deer (Odocoileus hemionus) population in Washington State. CONCLUSIONS/SIGNIFICANCE: Inventorying wild populations is one of the greatest challenges of wildlife agencies. These new statistical population reconstruction models should expand the demographic capabilities of wildlife agencies that have already collected pooled adult age-class data or are seeking a cost-effective method for monitoring the status and trends of our wild resources

    Maximum Likelihood Estimation of the Negative Binomial Dispersion Parameter for Highly Overdispersed Data, with Applications to Infectious Diseases

    Get PDF
    BACKGROUND: The negative binomial distribution is used commonly throughout biology as a model for overdispersed count data, with attention focused on the negative binomial dispersion parameter, k. A substantial literature exists on the estimation of k, but most attention has focused on datasets that are not highly overdispersed (i.e., those with k≥1), and the accuracy of confidence intervals estimated for k is typically not explored. METHODOLOGY: This article presents a simulation study exploring the bias, precision, and confidence interval coverage of maximum-likelihood estimates of k from highly overdispersed distributions. In addition to exploring small-sample bias on negative binomial estimates, the study addresses estimation from datasets influenced by two types of event under-counting, and from disease transmission data subject to selection bias for successful outbreaks. CONCLUSIONS: Results show that maximum likelihood estimates of k can be biased upward by small sample size or under-reporting of zero-class events, but are not biased downward by any of the factors considered. Confidence intervals estimated from the asymptotic sampling variance tend to exhibit coverage below the nominal level, with overestimates of k comprising the great majority of coverage errors. Estimation from outbreak datasets does not increase the bias of k estimates, but can add significant upward bias to estimates of the mean. Because k varies inversely with the degree of overdispersion, these findings show that overestimation of the degree of overdispersion is very rare for these datasets

    Seasonal changes in patterns of gene expression in avian song control brain regions.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity

    Smashing WEP in A Passive Attack

    Get PDF
    In this paper, we report extremely fast and optimised active and passive attacks against the old IEEE 802.11 wireless communication protocol WEP. This was achieved through a huge amount of theoretical and experimental analysis (capturing WiFi packets), refinement and optimisation of all the former known attacks and methodologies against RC4 stream cipher in WEP mode. We support all our claims by providing an implementation of this attack as a publicly available patch on Aircrack-ng. Our new attacks improve its success probability drastically. We adapt our theoretical analysis in Eurocrypt 2011 to real-world scenarios and we perform a slight adjustment to match the empirical observations. Our active attack, based on ARP injection, requires 22 500 packets to gain success probability of 50% against a 104-bit WEP key, using Aircrack-ng in non-interactive mode. It runs in less than 5 seconds on an off-the-shelf PC. Using the same number of packets, Aicrack-ng yields around 3% success rate. Furthermore, we describe very fast passive only attacks by just eavesdropping TCP/IPv4 packets in a WiFi communication. Our passive attack requires 27 500 packets. This is much less than the number of packets Aircrack-ng requires in active mode (around 37 500), which is a huge improvement.We believe that our analysis brings on further insight to the security of RC4

    A New Calibrated Bayesian Internal Goodness-of-Fit Method: Sampled Posterior p-Values as Simple and General p-Values That Allow Double Use of the Data

    Get PDF
    Background: Recent approaches mixing frequentist principles with Bayesian inference propose internal goodness-of-fit (GOF) p-values that might be valuable for critical analysis of Bayesian statistical models. However, GOF p-values developed to date only have known probability distributions under restrictive conditions. As a result, no known GOF p-value has a known probability distribution for any discrepancy function. Methodology/Principal Findings: We show mathematically that a new GOF p-value, called the sampled posterior p-value (SPP), asymptotically has a uniform probability distribution whatever the discrepancy function. In a moderate finite sample context, simulations also showed that the SPP appears stable to relatively uninformative misspecifications of the prior distribution. Conclusions/Significance: These reasons, together with its numerical simplicity, make the SPP a better canonical GOF p-value than existing GOF p-values

    A maritime decision support system to assess risk in the presence of environmental uncertainties: the REP10 experiment

    Get PDF
    The aim of this work is to report on an activity carried out during the 2010 Recognized Environmental Picture experiment, held in the Ligurian Sea during summer 2010. The activity was the first at-sea test of the recently developed decision support system (DSS) for operation planning, which had previously been tested in an artificial experiment. The DSS assesses the impact of both environmental conditions (meteorological and oceanographic) and non-environmental conditions (such as traffic density maps) on people and assets involved in the operation and helps in deciding a course of action that allows safer operation. More precisely, the environmental variables (such as wind speed, current speed and significant wave height) taken as input by the DSS are the ones forecasted by a super-ensemble model, which fuses the forecasts provided by multiple forecasting centres. The uncertainties associated with the DSS's inputs (generally due to disagreement between forecasts) are propagated through the DSS's output by using the unscented transform. In this way, the system is not only able to provide a traffic light map (run/not run the operation), but also to specify the confidence level associated with each action. This feature was tested on a particular type of operation with underwater gliders: the glider surfacing for data transmission. It is also shown how the availability of a glider path prediction tool provides surfacing options along the predicted path. The applicability to different operations is demonstrated by applying the same system to support diver operations
    corecore