10,615 research outputs found

    Field localization on a brane intersection in anti-de Sitter spacetime

    Full text link
    We discuss the localization of scalar, fermion, and gauge field zero modes on a 3−3-brane that resides at the intersection of two 4−4-branes in six-dimensional anti-de Sitter space. This set-up has been introduced in the context of brane world models and, higher-dimensional versions of it, in string theory. In both six- and ten-dimensional cases, it has been shown that four-dimensional gravity can be reproduced at the intersection, due to the existence of a massless, localized graviton zero-mode. However, realistic scenarios require also the Standard Model to be localized on the 3−3-brane. In this paper, we discuss under which conditions a higher-dimensional field theory, propagating on the above geometry, can have a zero-mode sector localized at the intersection and find that zero modes can be localized only if masses and couplings to the background curvature satisfy certain relations. We also consider the case when other 4-branes cut the bulk at some distance from the intersection and argue that, in the probe brane approximation, there is no significant effect on the localization properties at the 3−3-brane. The case of bulk fermions is particularly interesting, since the properties of the geometry allow localization of chiral modes independently.Comment: 13 pages, 3 figures, the version to be published in PR

    Relaxing to a three dimensional brane junction

    Full text link
    We suggest a mechanism which leads to 3+1 space-time dimensions. The Universe assumed to have nine spatial dimensions is regarded as a special nonlinear oscillatory system -- a kind of Einstein solid. There are p-brane solutions which manifest as phase oscillations separating different phase states. The presence of interactions allows for bifurcations of higher dimensional spaces to lower dimensional ones in the form of brane junctions. We argue this is a natural way to select lower dimensions.Comment: RevTex, 5 pages; version to appear in Europhys. Let

    Two-fluid magnetic island dynamics in slab geometry: I - Isolated islands

    Full text link
    A set of reduced, 2-D, two-fluid, drift-MHD equations is derived. Using these equations, a complete and fully self-consistent solution is obtained for an isolated magnetic island propagating through a slab plasma with uniform but different ion and electron fluid velocities. The ion and electron fluid flow profiles around the island are uniquely determined, and are everywhere continuous. Moreover, the island phase-velocity is uniquely specified by the condition that there be zero net electromagnetic force acting on the island. Finally, the ion polarization current correction to the Rutherford island width evolution equation is evaluated, and found to be stabilizing provided that the anomalous perpendicular ion viscosity significantly exceeds the anomalous perpendicular electron viscosity

    IVOA Recommendation: SAMP - Simple Application Messaging Protocol Version 1.3

    Full text link
    SAMP is a messaging protocol that enables astronomy software tools to interoperate and communicate. IVOA members have recognised that building a monolithic tool that attempts to fulfil all the requirements of all users is impractical, and it is a better use of our limited resources to enable individual tools to work together better. One element of this is defining common file formats for the exchange of data between different applications. Another important component is a messaging system that enables the applications to share data and take advantage of each other's functionality. SAMP builds on the success of a prior messaging protocol, PLASTIC, which has been in use since 2006 in over a dozen astronomy applications and has proven popular with users and developers. It is also intended to form a framework for more general messaging requirements

    Leishmania donovani populations in Eastern Sudan: temporal structuring and a link between human and canine transmission.

    Get PDF
    BACKGROUND: Visceral leishmaniasis (VL), caused by the members of the Leishmania donovani complex, has been responsible for devastating VL epidemics in the Sudan. Multilocus microsatellite and sequence typing studies can provide valuable insights into the molecular epidemiology of leishmaniasis, when applied at local scales. Here we present population genetic data for a large panel of strains and clones collected in endemic Sudan between 1993 and 2001. METHODS: Genetic diversity was evaluated at fourteen microsatellite markers and eleven nuclear sequence loci across 124 strains and clones. RESULTS: Microsatellite data defined six genetic subpopulations with which the nuclear sequence data were broadly congruent. Pairwise estimates of FST (microsatellite) and KST (sequence) indicated small but significant shifts among the allelic repertoires of circulating strains year on year. Furthermore, we noted the co-occurrence of human and canine L. donovani strains in three of the six clusters defined. Finally, we identified widespread deficit in heterozygosity in all four years tested but strong deviation from inter-locus linkage equilibrium in two years. CONCLUSIONS: Significant genetic diversity is present among L. donovani in Sudan, and minor population structuring between years is characteristic of entrenched, endemic disease transmission. Seasonality in vector abundance and transmission may, to an extent, explain the shallow temporal clines in allelic frequency that we observed. Genetically similar canine and human strains highlight the role of dogs as important local reservoirs of visceral leishmaniasis
    • …
    corecore