1,737 research outputs found
Effective Potential on Fuzzy Sphere
The effective potential of quantized scalar field on fuzzy sphere is
evaluated to the two-loop level. We see that one-loop potential behaves like
that in the commutative sphere and the Coleman-Weinberg mechanism of the
radiatively symmetry breaking could be also shown in the fuzzy sphere system.
In the two-loop level, we use the heavy-mass approximation and the
high-temperature approximation to perform the evaluations. The results show
that both of the planar and nonplanar Feynman diagrams have inclinations to
restore the symmetry breaking in the tree level. However, the contributions
from planar diagrams will dominate over those from nonplanar diagrams by a
factor N^2. Thus, at heavy-mass limit or high-temperature system the quantum
field on the fuzzy sphere will behave like those on the commutative sphere. We
also see that there is a drastic reduction of the degrees of freedom in the
nonplanar diagrams when the particle wavelength is smaller than the
noncommutativity scale.Comment: Latex 18 pages, some typos correcte
Entropy of gravitating systems: scaling laws versus radial profiles
Through the consideration of spherically symmetric gravitating systems
consisting of perfect fluids with linear equation of state constrained to be in
a finite volume, an account is given of the properties of entropy at conditions
in which it is no longer an extensive quantity (it does not scale with system's
size). To accomplish this, the methods introduced by Oppenheim [1] to
characterize non-extensivity are used, suitably generalized to the case of
gravitating systems subject to an external pressure. In particular when, far
from the system's Schwarzschild limit, both area scaling for conventional
entropy and inverse radius law for the temperature set in (i.e. the same
properties of the corresponding black hole thermodynamical quantities), the
entropy profile is found to behave like 1/r, being r the area radius inside the
system. In such circumstances thus entropy heavily resides in internal layers,
in opposition to what happens when area scaling is gained while approaching the
Schwarzschild mass, in which case conventional entropy lies at the surface of
the system. The information content of these systems, even if it globally
scales like the area, is then stored in the whole volume, instead of packed on
the boundary.Comment: 16 pages, 11 figures. v2: addition of some references; the stability
of equilibrium configurations is readdresse
Lepto-mesons, Leptoquarkonium and the QCD Potential
We consider bound states of heavy leptoquark-antiquark pairs (lepto-mesons)
as well as leptoquark-antileptoquark pairs (leptoquarkonium). Unlike the
situation for top quarks, leptoquarks (if they exist) may live long enough for
these hadrons to form. We study the spectra and decay widths of these states in
the context of a nonrelativistic potential model which matches the recently
calculated two-loop QCD potential at short distances to a successful
phenomenological quarkonium potential at intermediate distances. We also
compute the expected number of events for these states at future colliders.Comment: 12 pages, 1 figure, 3 tables, plain TeX, requires harvmac. References
updated and minor clarifications made. To appear in Physics Letters
Leptogenesis from Pseudo-Scalar Driven Inflation
We examine recent claims for a considerable amount of leptogenesis, in some
inflationary scenarios, through the gravitational anomaly in the lepton number
current. We find that when the short distances contributions are properly
included the amount of lepton number generated is actually much smaller.Comment: JHEP style, 11 pages. Corrected typ
A finite cutoff on the string worldsheet?
D-brane backgrounds are specified in closed string theories by holes with
appropriate mixed Dirichlet and Neumann boundary conditions on the string
worldsheet. As presently stated, the prescription defining D-brane backgrounds
is such that the Einstein equation is not equivalent to the condition for scale
invariance on the string worldsheet. A modified D-brane prescription is found,
that leads to the desired equivalence, while preserving all known D-brane lore.
A possible interpretation is that the worldsheet cutoff is finite. Possible
connections to recent work of Maldacena and Strominger, and Gopakumar and Vafa
are suggested.Comment: 7 pages, RevTex; v2: typos corrected, superstring calculation
included, discussion expanded - to be published in Phys.Rev.
Fractal Holography: a geometric re-interpretation of cosmological large scale structure
The fractal dimension of large-scale galaxy clustering has been demonstrated
to be roughly from a wide range of redshift surveys. If correct,
this statistic is of interest for two main reasons: fractal scaling is an
implicit representation of information content, and also the value itself is a
geometric signature of area. It is proposed that the fractal distribution of
galaxies may thus be interpreted as a signature of holography (``fractal
holography''), providing more support for current theories of holographic
cosmologies. Implications for entropy bounds are addressed. In particular,
because of spatial scale invariance in the matter distribution, it is shown
that violations of the spherical entropy bound can be removed. This holographic
condition instead becomes a rigid constraint on the nature of the matter
density and distribution in the Universe. Inclusion of a dark matter
distribution is also discussed, based on theoretical considerations of possible
universal CDM density profiles.Comment: 13 pp, LaTeX. Revised version; to appear in JCA
Magnetic Wormholes and Vertex Operators
We consider wormhole solutions in Euclidean dimensions. A duality
transformation is introduced to derive a new action from magnetic wormhole
action of Gupta, Hughes, Preskill and Wise. The classical solution is
presented. The vertex operators corresponding to the wormhole are derived.
Conformally coupled scalars and spinors are considered in the wormhole
background and the vertex operators are computed. ( To be published in Phys.
Rev. D15)Comment: 18 pages of RevTex, preprint IP/BBSR/94-2
On the Thermal History of Calculable Gauge Mediation
Many messenger models with realistic gaugino masses are based on meta-stable
vacua. In this work we study the thermal history of some of these models.
Analyzing R-symmetric models, we point out that while some of the known
messenger models clearly prefer the supersymmetric vacuum, there is a vast
class of models where the answer depends on the initial conditions. Along with
the vacuum at the origin, the high temperature thermal potential also possesses
a local minimum far away from the origin. This vacuum has no analog at zero
temperature. The first order phase transition from this vacuum into the
supersymmetric vacuum is parametrically suppressed, and the theory, starting
from that vacuum, is likely to evolve to the desired gauge-mediation vacuum. We
also comment on the thermal evolution of models without R-symmetry.Comment: 22 pages. V2: Comments on the SM effects added. Minor corrections.
Reference added. Valuable discussion with S. Abel, J. Jaeckel and V. Khoze
acknowledged. V3: Types of EOGM explicitly defined in the introduction.
Discussions about the phase transitions expanded. Typo corrected. Journal
versio
Cleaning sky survey databases using Hough Transform and Renewal String approaches
Large astronomical databases obtained from sky surveys such as the
SuperCOSMOS Sky Survey (SSS) invariably suffer from spurious records coming
from artefactual effects of the telescope, satellites and junk objects in orbit
around earth and physical defects on the photographic plate or CCD. Though
relatively small in number these spurious records present a significant problem
in many situations where they can become a large proportion of the records
potentially of interest to a given astronomer. Accurate and robust techniques
are needed for locating and flagging such spurious objects, and we are
undertaking a programme investigating the use of machine learning techniques in
this context. In this paper we focus on the four most common causes of unwanted
records in the SSS: satellite or aeroplane tracks, scratches, fibres and other
linear phenomena introduced to the plate, circular halos around bright stars
due to internal reflections within the telescope and diffraction spikes near to
bright stars. Appropriate techniques are developed for the detection of each of
these. The methods are applied to the SSS data to develop a dataset of spurious
object detections, along with confidence measures, which can allow these
unwanted data to be removed from consideration. These methods are general and
can be adapted to other astronomical survey data.Comment: Accepted for MNRAS. 17 pages, latex2e, uses mn2e.bst, mn2e.cls,
md706.bbl, shortbold.sty (all included). All figures included here as low
resolution jpegs. A version of this paper including the figures can be
downloaded from http://www.anc.ed.ac.uk/~amos/publications.html and more
details on this project can be found at
http://www.anc.ed.ac.uk/~amos/sattrackres.htm
Brane Boxes, Anomalies, Bending and Tadpoles
Certain classes of chiral four-dimensional gauge theories may be obtained as
the worldvolume theories of D5-branes suspended between networks of NS5-branes,
the so-called brane box models. In this paper, we derive the stringy
consistency conditions placed on these models, and show that they are
equivalent to anomaly cancellation of the gauge theories. We derive these
conditions in the orbifold theories which are T-dual to the elliptic brane box
models. Specifically, we show that the expression for tadpoles for unphysical
twisted Ramond-Ramond 4-form fields in the orbifold theory are proportional to
the gauge anomalies of the brane box theory. Thus string consistency is
equivalent to worldvolume gauge anomaly cancellation. Furthermore, we find
additional cylinder amplitudes which give the -functions of the gauge
theory. We show how these correspond to bending of the NS-branes in the brane
box theory.Comment: 14 pages, 3 epsf figures. Minor changes, references adde
- …
