42,850 research outputs found

    Electric field effect modulation of transition temperature, mobile carrier density and in-plane penetration depth in NdBa2Cu3O(7-delta) thin films

    Full text link
    We explore the relationship between the critical temperature, T_c, the mobile areal carrier density, n_2D, and the zero temperature magnetic in-plane penetration depth, lambda_ab(0), in very thin underdoped NdBa2Cu3O{7-delta} films near the superconductor to insulator transition using the electric field effect technique. We observe that T_c depends linearly on both, n_2D and lambda_ab(0), the signature of a quantum superconductor to insulator (QSI) transition in two dimensions with znu-bar where z is the dynamic and nu-bar the critical exponent of the in-plane correlation length.Comment: 4 pages, 4 figure

    Preliminary results of aerial infrared surveys at Pisgah Crater, California

    Get PDF
    In-flight tests of airborne infrared scanners, and comparison with field reflectance dat

    Equilibrium Configurations of Homogeneous Fluids in General Relativity

    Full text link
    By means of a highly accurate, multi-domain, pseudo-spectral method, we investigate the solution space of uniformly rotating, homogeneous and axisymmetric relativistic fluid bodies. It turns out that this space can be divided up into classes of solutions. In this paper, we present two new classes including relativistic core-ring and two-ring solutions. Combining our knowledge of the first four classes with post-Newtonian results and the Newtonian portion of the first ten classes, we present the qualitative behaviour of the entire relativistic solution space. The Newtonian disc limit can only be reached by going through infinitely many of the aforementioned classes. Only once this limiting process has been consummated, can one proceed again into the relativistic regime and arrive at the analytically known relativistic disc of dust.Comment: 8 pages, colour figures, v3: minor additions including one reference, accepted by MNRA

    Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory

    Get PDF
    We uniquely determine the infrared asymptotics of Green functions in Landau gauge Yang-Mills theory. They have to satisfy both, Dyson-Schwinger equations and functional renormalisation group equations. Then, consistency fixes the relation between the infrared power laws of these Green functions. We discuss consequences for the interpretation of recent results from lattice QCD.Comment: 24 pages, 8 figure

    Fluids with quenched disorder: Scaling of the free energy barrier near critical points

    Full text link
    In the context of Monte Carlo simulations, the analysis of the probability distribution PL(m)P_L(m) of the order parameter mm, as obtained in simulation boxes of finite linear extension LL, allows for an easy estimation of the location of the critical point and the critical exponents. For Ising-like systems without quenched disorder, PL(m)P_L(m) becomes scale invariant at the critical point, where it assumes a characteristic bimodal shape featuring two overlapping peaks. In particular, the ratio between the value of PL(m)P_L(m) at the peaks (PL,maxP_{L, max}) and the value at the minimum in-between (PL,minP_{L, min}) becomes LL-independent at criticality. However, for Ising-like systems with quenched random fields, we argue that instead ΔFL:=ln⁡(PL,max/PL,min)∝Lξ\Delta F_L := \ln (P_{L, max} / P_{L, min}) \propto L^\theta should be observed, where ξ>0\theta>0 is the "violation of hyperscaling" exponent. Since ξ\theta is substantially non-zero, the scaling of ΔFL\Delta F_L with system size should be easily detectable in simulations. For two fluid models with quenched disorder, ΔFL\Delta F_L versus LL was measured, and the expected scaling was confirmed. This provides further evidence that fluids with quenched disorder belong to the universality class of the random-field Ising model.Comment: sent to J. Phys. Cond. Mat

    An Introduction to Conformal Ricci Flow

    Full text link
    We introduce a variation of the classical Ricci flow equation that modifies the unit volume constraint of that equation to a scalar curvature constraint. The resulting equations are named the Conformal Ricci Flow Equations because of the role that conformal geometry plays in constraining the scalar curvature. These equations are analogous to the incompressible Navier-Stokes equations of fluid mechanics inasmuch as a conformal pressure arises as a Lagrange multiplier to conformally deform the metric flow so as to maintain the scalar curvature constraint. The equilibrium points are Einstein metrics with a negative Einstein constant and the conformal pressue is shown to be zero at an equilibrium point and strictly positive otherwise. The geometry of the conformal Ricci flow is discussed as well as the remarkable analytic fact that the constraint force does not lose derivatives and thus analytically the conformal Ricci equation is a bounded perturbation of the classical unnormalized Ricci equation. That the constraint force does not lose derivatives is exactly analogous to the fact that the real physical pressure force that occurs in the Navier-Stokes equations is a bounded function of the velocity. Using a nonlinear Trotter product formula, existence and uniqueness of solutions to the conformal Ricci flow equations is proven. Lastly, we discuss potential applications to Perelman's proposed implementation of Hamilton's program to prove Thurston's 3-manifold geometrization conjectures.Comment: 52 pages, 1 figur

    Compact solid-state laser source for 1S-2S spectroscopy in atomic hydrogen

    Full text link
    We demonstrate a novel compact solid-state laser source for high-resolution two-photon spectroscopy of the 1S−2S1S-2S transition in atomic hydrogen. The source emits up to 20 mW at 243 nm and consists of a 972 nm diode laser, a tapered amplifier, and two doubling stages. The diode laser is actively stabilized to a high-finesse cavity. We compare the new source to the stable 486 nm dye laser used in previous experiments and record 1S-2S spectra using both systems. With the solid-state laser system we demonstrate a resolution of the hydrogen spectrometer of 6 \times 10^{11} which is promising for a number of high-precision measurements in hydrogen-like systems
    • 

    corecore