42 research outputs found
Cytotoxicity and antitumoral activity of dichloromethane extract and its fractions from Pothomorphe umbellata
The cytotoxicity of the dichloromethane crude extract (DCE), obtained from the aerial parts of Pothomorphe umbellata (L.) Miq (Piperaceae), was evaluated against nine human cancer cell lines (MCF-7, NCI-ADR/RES, OVCAR-3, PC-3, HT-29, NCI-H460, 786-O, UACC-62, K-562). The DCE presented antiproliferative activity with good potency against all cell lines at low concentrations (between 4.0 and 9.5 µg/mL) and with selectivity (1.55 µg/mL) for the leukemia cell line (K-652). DCE (100, 200, 300 and 400 mg/kg, ip) was also evaluated in the Ehrlich ascites tumor model. Both the survival number and the life span of the animals that died increased by at least 45 and 50%, respectively (8 animals per group), demonstrating P. umbellata extract potential anticancer activity. The results of the in vivo antitumor activity prompted the fractionation of the crude extract. The crude extract was submitted to dry column chromatography with dichloromethane-methanol (99:1). The column effluent fractions were extracted with methanol, dried under vacuum yielding fractions FR1 (less polar), FR2 (medium polarity), and FR3 (polar), which were analyzed for their growth inhibition or cytotoxic properties by a 48-h sulforhodamine B cell viability assay by measuring the total protein content. FR1 demonstrated high potency and cytotoxicity, a result compatible with the high toxicity of oxalic acid; FR2, containing 4-nerolidylcathecol, presented the lowest cytotoxic activity compared to the other two fractions but with selectivity for prostate cancer cell line; FR3, containing a mixture of steroids described in the literature as possessing various biological activities, also presented potent anticancer in vitro activity. These results suggest that P. umbellata DCE in vivo antitumor activity may be a consequence of the activity of different active principles.41141
Atividade antimicrobiana de extratos hidroalcólicos de espécies da coleção de plantas medicinais CPQBA/UNICAMP
Extratos obtidos a partir de 45 espécies da Coleção de Germoplasmas do CPQBA foram estudados quanto à atividade antimicrobiana. As espécies que apresentaram forte inibição (Concentração Mínima Inibitória até 0,5 mg/mL) para os respectivos microrganismos foram: Achillea millefolium (0,5), Mikania laevigata (0,04), Solidago chilensis (0,1), Piper marginatum (0,2) para Staphylococcus aureus; Aloysia gratissima (0,1), P. marginatum (0,2), M. laevigata (0,09) para Bacillus subtilis e Mentha pullegium (0,3), Mikania glomerata (0,1), M. laevigata (0,04), Stachytarpeta cayenensis (0,2) e Bacharis dracunculifolia (0,5) para Streptococcus faecium. De acordo com os resultados, ressaltamos a espécie M. laevigata por apresentar inibição contra três das bactérias estudadas, em concentrações similares a do cloranfenicol, padrão de referência utilizado
Genetic diversity analysis of varronia curassavica Jacq. accessions using ISSR markers
Varronia curassavica Jacq. is a medicinal and aromatic plant from Brazil with significant economic importance. Studies on genetic diversity in active germplasm banks (AGB) are essential for conservation and breeding programs. The aim of this study was to analyze the genetic diversity of V. curassavica accessions of the AGB of Medicinal and Aromatic Plants of the Federal University of Sergipe (UFS), using inter-simple sequence repeat molecular markers. Twenty-four primers were tested, and 14 were polymorphic and informative, resulting in 149 bands with 97.98% polymorphism. The UPGMA dendrogram divided the accessions into Clusters I and II. Jaccard similarity coefficients for pair-wise comparisons of accessions ranged between 0.24 and 0.78. The pairs of accessions VCUR-001/VCUR-503, VCUR-001/VCUR-504, and VCUR-104/VCUR-501 showed relatively low similarity (0.24), and the pair of accessions VCUR-402/VCUR403 showed medium similarity (0.78). Twenty-eight accessions were divided into three distinct clusters, according to the STRUCTURE analysis. The genetic diversity of V. curassavica in the AGB of UFS is low to medium, and it requires expansion. Accession VCUR-802 is the most suitable for selection in breeding program of this species, since it clearly represents all of the diversity present in the AGB153CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE APOIO À PESQUISA E À INOVAÇÃO TECNOLÓGICA DO ESTADO DE SERGIPE - FAPITECnão temnão temnão temnão te
Action Of Essential Oils From Brazilian Native And Exotic Medicinal Species On Oral Biofilms
Background: Essential oils (EO) obtained from twenty medicinal and aromatic plants were evaluated for their antimicrobial activity against the oral pathogens Candida albicans, Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus sanguis and Streptococcus mitis. Methods: The antimicrobial activity of the EO was evaluates by microdilution method determining Minimal Inhibitory Concentration. Chemical analysis of the oils compounds was performed by Gas chromatography-mass spectrometry (CG-MS). The most active EO were also investigated as to their actions on the biolfilm formation. Results: The most of the essential oils (EO) presented moderate to strong antimicrobial activity against the oral pathogens (MIC - Minimal Inhibitory Concentrations values between 0.007 and 1.00mg/mL). The essential oil from Coriandrum sativum inhibited all oral species with MIC values from 0.007 to 0.250mg/mL, and MBC/MFC (Minimal Bactericidal/Fungicidal Concentrations) from 0.015 to 0.500mg/mL. On the other hand the essential oil of C. articulatus inhibited 63.96% of S. sanguis biofilm formation. Through Scanning Eletronic Microscopy (SEM) images no changes were observed in cell morphology, despite a decrease in biofilm formation and changes on biofilm structure. Chemical analysis by Gas Chromatography - Mass Spectrometry (GC-MS) of the C. sativum essential oil revealed major compounds derivatives from alcohols and aldehydes, while Cyperus articulatus and Aloysia gratissima (EOs) presented mono and sesquiterpenes. Conclusions: In conclusion, the crude oil from C. articulatus exhibited the best results of antimicrobial activity e ability to control biofilm formation. The chemical analysis showed the presence of terpenes and monoterpenes such as a-pinene, a-bulnesene and copaene. The reduction of biofilms formation was confirmed from SEM images. The results of this research shows a great potential from the plants studied as new antimicrobial sources.141Kolenbrander, P.E., Oral microbial communities: biofilms, interactions, and genetic systems (2000) Annu Rev Microbiol, 54, pp. 413-437Spratt, P.A., Pratten, J., Biofilms and the oral cavity (2003) Rev Environ Sci Biotechnol, 2, pp. 463-467Kolembrander, P.E., Multispecies communities: interspecies interactions influence growth on saliva as sole nutritional source (2011) Int J Oral Sci, 3, pp. 49-54Marsh, P.D., Dental plaque: biological significance of a biofilm and community life-style (2005) J Clin Periodontol, 32, pp. 7-15Bernimoulin, J.P., Recent concepts in plaque formation (2003) J Clin Periodontol, 30, pp. 7-9Marsh, P.D., Are dental diseases examples of ecological catastrophes? (2003) Microbiology, 149, pp. 279-294Filoche, S.K., Soma, K., Sissons, C.H., Antimicrobial effects of essencial oils in combination with chlorexidine digluconate (2005) Oral Microbiol Immunol, 20, pp. 221-225Rosenthal, S., Spangberg, L., Safavi, K., Conn, F., Chlorhexidine substantivity in root canal dentin (2004) Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 98, pp. 488-492Zheng, C.Y., Wang, Z.H., Effects of chlorhexidine, listerine and fluoride listerine mouthrinses on four putative root-caries pathogens in the biofilm (2011) Chin J Dent Res, 14, pp. 135-140Lang, G., Buchbauer, G., A review on recent research results (2008-2010) on essential oils as antimicrobials and antifungals (2012) Rev Flavour Fragr J, 27, pp. 13-39Calsamiglia, S., Busquet, M., Cardozo, P.W., Castillejos, L., Ferret, A., Invited review: essential oils as modifiers of rúmen microbial fermentation (2007) J Dairy Sci, 6, pp. 2580-2595Khan, A., Ahmad, A., Akhtar, F., Yousuf, S., Xess, I., Khan, L.A., Manzoor, N., Induction of oxidative stress as a possible mechanism of the antifungal action of three phenylpropanoids (2011) FEMS Yeast Res, 11, pp. 114-122Cha, J.D., Jeong, M.R., Jeong, S.I.I., Moon, S.E., Kil, B.S., Yun, S.I.I., Lee, K.Y., Song, Y.H., Chemical composition and antimicrobial activity of the essential oil of Cryptomeria japonica (2007) Phytother Res, 21, pp. 295-299Maggi, F., Cacchini, C., Cresci, A., Coman, M.M., Tirillini, B., Sagratini, G., Papa, F., Vittori, S., Chemical composition and antimicrobial activity of Hypericum hircinum L. Subsp. majus essential oil (2010) Chem Nat Compd, 1, pp. 125-129Nascimento, P.F.C., Alviano, W.S., Nascimento, A.L.C., Santos, P.O., Arrigoni-Blank, M.F., Jesus, R.A., Azevedo, V.G., Trindade, R.C., Hyptis pectinata essential oil: chemical composition and anti-Streptococcus mutans activity (2008) Oral Dis, 14, pp. 485-489Gorelov, V.E., Aksel'rod, L.S., Migalisnkaya, L.N., An investigation of the hydraulics and effectiveness of fractionation columns with sieve packing (1971) Chem Petrol Eng, 7, pp. 211-214Duarte, M.C.T., Figueira, G.M., Sartoratto, A., Rehder, V.L., Delarmelina, C., Anti-Candida activity of Brazilian medicinal plants (2005) J Ethnopharmacol, 97, pp. 305-311Adams, R.P., (2007) Identification of Essential Oils Components by Gas Chromatography/Mass Spectrometry, 4. , USA: Allured publishing Edited by Carol Stream Ill(2002) Methods for Dilution Antimicrobial Susceptibility Tests for yeast, , Approved Standard CLSI document M27-A2. Volume 22 2nd edition. Edited by: FortWayne Ind USA(2005) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, , In Approved Standard CLSI document M07-A6. Volume 26 6th edition. Edited by: FortWayne Ind USAHafidh, R.R., Abdulamir, A.S., Vern, L.S., Bakar, F.A., Abas, F., Jahanshiri, F., Sekawi, Z., Inhibition of growth of highly resistant bacterial and fungal pathogens by a natural product (2011) Open Microbiol J, 5, pp. 96-106Niu, C., Gilbert, E.S., Colorimetric method for identifying plant essential Oil components that affect biofilm formation and structure (2004) Appl Environ Microbiol, 70, pp. 6951-6956Djordjevic, D., Wiedmann, M., McLandsborough, L.A., Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation (2002) Appl Environ Microbiol, 68, pp. 2950-2958Hawser, S.P., Douglas, L.J., Biofilm formation by Candida species on the surface of catheter materials in vitro (1994) Infect Immun, 62, pp. 915-921Furletti, V.F., Teixeira, I.P., Obando-Pereda, G., Mardegan, R.C., Sartoratto, A., Figueira, G.M., Duarte, R.M.T., Höfling, J.F., Action of Coriandrum sativum L. essential oil upon oral Candida albicans biofilm formation (2011) Evid Based Complement Alternat Med, pp. 1-9. , http://dx.doi.org/10.1155/2011/985832Oladusu, I.A., Usman, L.A., Olawore, N.O., Atata, R.F., Antibacterial activity of rhizomes essential oils of types of Cyperus articulatus Growing in Nigeria (2011) Ad Bio Res, 5, pp. 179-183Botelho, M.A., Nogueira, N.A.P., Bastos, G.M., Fonseca, S.G.C., Lemos, T.L.G., Matos, F.J.A., Montenegro, D., Brito, G.A.C., Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens (2007) Braz J Med Biol Res, 40, pp. 349-356Donlan, R.M., Costerton, J.W., Biofilms: survival mechanisms of clinically relevant microorganisms (2002) Clin Microbiol Rev, 15, pp. 167-193Hope, C.K., Wilson, M., Analysis of the effects of chlorhexidine on oral-biofilm vitality and structure based on viability profiling and an indicator of membrane integrity (2004) Antimicrob Agents Ch, 48, pp. 1461-1468Chandra, J., Antifungal resistance of Candida biofilms formed on denture acrylic in vitro (2003) J Dent Res, 80, pp. 903-908Hendry, E.R., Worthington, T., Conway, B.R., Lambert, P.A., Antimicrobial efficacy of eucalyptus oil and 1,8-cineole against microorganisms grow in planktonic and biofilm cultures (2009) J Antimicrob Chemother, 64, pp. 1219-1225Carson, C.F., Me, B.J., Riley, T.V., Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy (2002) Antimicrob Agents Chemother, 46, pp. 1914-1920Martins, A., Salgueiro, L.R., Gonçalves, M.J., Proença, S.C., Vila, A., Canigueral, R., Essential oil composition and antimicrobial activity of Santiria trimera bark (2003) Planta Med, 69, pp. 77-79Galvão, L.C.C., Furletti, V.F., Bersan, S.M.F., Cunha, M.G., Ruiz, A.L.T.G., Carvalho, J.E., Sartoratto, A., Rosalen, P.L., Antimicrobial activity of essential oils against streptococcus mutans and their antiproliferative effects (2012) J Evid Based Complementary Altern Med, 40, pp. 1-12Douglas, L.J., Candida biofilms and their role in infection (2004) Trends Microbiol, 11, pp. 30-36Begnami, A.F., Duarte, M.C.T., Furletti, V., Rehder, V.L.G., Antimicrobial potential of Coriandrum sativum L. against different Candida species in vitro (2010) Food Chem, 118, pp. 74-77Dorman, H., Deans, S., Antimicrobial agents from plants: antibacterial activity of plant volatile oils (2000) J Appl Microbiol, 88, pp. 308-316Mercier, B., Prost, J., Prost, M., The essential oil of turpentine and its major volatile fraction (alpha-and beta-pinenes): a review (2009) Int J Occup Med Environ Health, 22, pp. 331-342Delaquis, P.J., Stanich, K., Girard, B., Mazza, G., Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils (2001) Int J Food Microbiol, 74, pp. 101-109Kim, K., Kim, Y., Yu, H., Jeong, S., Cha, J., Kil, B., You, Y., Antibacterial activity and chemical composition of essential oil of Chrysanthemun boreal (2003) Planta Med, 69, pp. 274-277Silva, F., Ferreira, S., Queiroz, J.A., Domingues, F.C., Coriander (Coriandrum sativum L.) essential oils: its antibacterial activity and mode of action evaluated by flow cytometry (2011) J Med Microbiol, 60, pp. 1479-1486Khan, A., Ahmad, A., Akhtar, F., Yousuf, S., Xess, I., Khan, L.A., Manzoor, N., Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity (2010) Res Microbiol, 161, pp. 816-823Pavithra, P.S., Sreevidya, N., Verma, R.S., Antibacterial activity and chemical composition of essential oil of Pamburus missionis (2009) J Ethnopharmacol, 124, pp. 151-153Magwa, M.L., Gundidza, M., Gwerua, N., Humphrey, G., Chemical composition and biological activities essential oil from the leaves of Sesuvium portulacastrum (2006) J Ethnopharmacol, 103, pp. 85-8
A remnant planetary core in the hot-Neptune desert
The interiors of giant planets remain poorly understood. Even for the planets in the Solar System, difficulties in observation lead to large uncertainties in the properties of planetary cores. Exoplanets that have undergone rare evolutionary processes provide a route to understanding planetary interiors. Planets found in and near the typically barren hot-Neptune ‘desert’1,2 (a region in mass–radius space that contains few planets) have proved to be particularly valuable in this regard. These planets include HD149026b3, which is thought to have an unusually massive core, and recent discoveries such as LTT9779b4 and NGTS-4b5, on which photoevaporation has removed a substantial part of their outer atmospheres. Here we report observations of the planet TOI-849b, which has a radius smaller than Neptune’s but an anomalously large mass of
Earth masses and a density of
grams per cubic centimetre, similar to Earth’s. Interior-structure models suggest that any gaseous envelope of pure hydrogen and helium consists of no more than
per cent of the total planetary mass. The planet could have been a gas giant before undergoing extreme mass loss via thermal self-disruption or giant planet collisions, or it could have avoided substantial gas accretion, perhaps through gap opening or late formation6. Although photoevaporation rates cannot account for the mass loss required to reduce a Jupiter-like gas giant, they can remove a small (a few Earth masses) hydrogen and helium envelope on timescales of several billion years, implying that any remaining atmosphere on TOI-849b is likely to be enriched by water or other volatiles from the planetary interior. We conclude that TOI-849b is the remnant core of a giant planet
A remnant planetary core in the hot-Neptune desert
The interiors of giant planets remain poorly understood. Even for the planets in the Solar System, difficulties in observation lead to large uncertainties in the properties of planetary cores. Exoplanets that have undergone rare evolutionary processes provide a route to understanding planetary interiors. Planets found in and near the typically barren hot-Neptune ‘desert’1,2 (a region in mass–radius space that contains few planets) have proved to be particularly valuable in this regard. These planets include HD149026b3, which is thought to have an unusually massive core, and recent discoveries such as LTT9779b4 and NGTS-4b5, on which photoevaporation has removed a substantial part of their outer atmospheres. Here we report observations of the planet TOI-849b, which has a radius smaller than Neptune’s but an anomalously large mass of 39.1−2.6+2.7 Earth masses and a density of 5.2−0.8+0.7 grams per cubic centimetre, similar to Earth’s. Interior-structure models suggest that any gaseous envelope of pure hydrogen and helium consists of no more than 3.9−0.9+0.8 per cent of the total planetary mass. The planet could have been a gas giant before undergoing extreme mass loss via thermal self-disruption or giant planet collisions, or it could have avoided substantial gas accretion, perhaps through gap opening or late formation6. Although photoevaporation rates cannot account for the mass loss required to reduce a Jupiter-like gas giant, they can remove a small (a few Earth masses) hydrogen and helium envelope on timescales of several billion years, implying that any remaining atmosphere on TOI-849b is likely to be enriched by water or other volatiles from the planetary interior. We conclude that TOI-849b is the remnant core of a giant planet
Dexamethasone intravitreal implant in previously treated patients with diabetic macular edema : Subgroup analysis of the MEAD study
Background: Dexamethasone intravitreal implant 0.7 mg (DEX 0.7) was approved for treatment of diabetic macular edema (DME) after demonstration of its efficacy and safety in the MEAD registration trials. We performed subgroup analysis of MEAD study results to evaluate the efficacy and safety of DEX 0.7 treatment in patients with previously treated DME. Methods: Three-year, randomized, sham-controlled phase 3 study in patients with DME, best-corrected visual acuity (BCVA) of 34.68 Early Treatment Diabetic Retinopathy Study letters (20/200.20/50 Snellen equivalent), and central retinal thickness (CRT) 65300 \u3bcm measured by time-domain optical coherence tomography. Patients were randomized to 1 of 2 doses of DEX (0.7 mg or 0.35 mg), or to sham procedure, with retreatment no more than every 6 months. The primary endpoint was 6515-letter gain in BCVA at study end. Average change in BCVA and CRT from baseline during the study (area-under-the-curve approach) and adverse events were also evaluated. The present subgroup analysis evaluated outcomes in patients randomized to DEX 0.7 (marketed dose) or sham based on prior treatment for DME at study entry. Results: Baseline characteristics of previously treated DEX 0.7 (n = 247) and sham (n=261) patients were similar. In the previously treated subgroup, mean number of treatments over 3 years was 4.1 for DEX 0.7 and 3.2 for sham, 21.5 % of DEX 0.7 patients versus 11.1 % of sham had 6515-letter BCVA gain from baseline at study end (P = 0.002), mean average BCVA change from baseline was +3.2 letters with DEX 0.7 versus +1.5 letters with sham (P = 0.024), and mean average CRT change from baseline was -126.1 \u3bcm with DEX 0.7 versus -39.0 \u3bcm with sham(P < 0.001). Cataract-related adverse events were reported in 70.3 % of baseline phakic patients in the previously treated DEX 0.7 subgroup; vision gains were restored following cataract surgery. Conclusions: DEX 0.7 significantly improved visual and anatomic outcomes in patients with DME previously treated with laser, intravitreal anti-vascular endothelial growth factor, intravitreal triamcinolone acetonide, or a combination of these therapies. The safety profile of DEX 0.7 in previously treated patients was similar to its safety profile in the total study population