42 research outputs found

    Redo-redo aortic root replacement with a mechanical valved conduit in a patient with von Willebrand's disease: Case report

    Get PDF
    A 40 year-old female, with a history of cardiac surgery for congenital aortic valve stenosis and von Willebrand's disease (VWD) presented with increasing shortness of breath due to mixed aortic valve dysfunction. With a paucity of such cases in the literature, we describe the successful outcome of a patient with VWD who underwent elective redo-redo aortic root replacement with a mechanical valved conduit. She was given a three-month trial of warfarin pre-operatively to evaluate the extent of bleeding risk. Her post-operative course was uneventful and she was discharged home after six days

    Bleeding from gastrointestinal angioectasias is not related to bleeding disorders - a case control study

    Get PDF
    n/aOriginal Publication:Charlotte M Hoog, Olle Brostrom, Tomas Lindahl, Andreas Hillarp, Gerd Larfars and Urban Sjoqvist, Bleeding from gastrointestinal angioectasias is not related to bleeding disorders - a case control study, 2010, BMC GASTROENTEROLOGY, (10), 113.http://dx.doi.org/10.1186/1471-230X-10-113Licensee: BioMed Centralhttp://www.biomedcentral.com

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion
    corecore