401 research outputs found

    A squeezed review on coherent states and nonclassicality for non-Hermitian systems with minimal length

    Get PDF
    It was at the dawn of the historical developments of quantum mechanics when Schrödinger, Kennard and Darwin proposed an interesting type of Gaussian wave packets, which do not spread out while evolving in time. Originally, these wave packets are the prototypes of the renowned discovery, which are familiar as “coherent states” today. Coherent states are inevitable in the study of almost all areas of modern science, and the rate of progress of the subject is astonishing nowadays. Nonclassical states constitute one of the distinguished branches of coherent states having applications in various subjects including quantum information processing, quantum optics, quantum superselection principles and mathematical physics. On the other hand, the compelling advancements of non-Hermitian systems and related areas have been appealing, which became popular with the seminal paper by Bender and Boettcher in 1998. The subject of non-Hermitian Hamiltonian systems possessing real eigenvalues are exploding day by day and combining with almost all other subjects rapidly, in particular, in the areas of quantum optics, lasers and condensed matter systems, where one finds ample successful experiments for the proposed theory. For this reason, the study of coherent states for non-Hermitian systems have been very important. In this article, we review the recent developments of coherent and nonclassical states for such systems and discuss their applications and usefulness in different contexts of physics. In addition, since the systems considered here originated from the broader context of the study of minimal uncertainty relations, our review is also of interest to the mathematical physics communit

    Development of a clinical decision model for thyroid nodules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thyroid nodules represent a common problem brought to medical attention. Four to seven percent of the United States adult population (10–18 million people) has a palpable thyroid nodule, however the majority (>95%) of thyroid nodules are benign. While, fine needle aspiration remains the most cost effective and accurate diagnostic tool for thyroid nodules in current practice, over 20% of patients undergoing FNA of a thyroid nodule have indeterminate cytology (follicular neoplasm) with associated malignancy risk prevalence of 20–30%. These patients require thyroid lobectomy/isthmusectomy purely for the purpose of attaining a definitive diagnosis. Given that the majority (70–80%) of these patients have benign surgical pathology, thyroidectomy in these patients is conducted principally with diagnostic intent. Clinical models predictive of malignancy risk are needed to support treatment decisions in patients with thyroid nodules in order to reduce morbidity associated with unnecessary diagnostic surgery.</p> <p>Methods</p> <p>Data were analyzed from a completed prospective cohort trial conducted over a 4-year period involving 216 patients with thyroid nodules undergoing ultrasound (US), electrical impedance scanning (EIS) and fine needle aspiration cytology (FNA) prior to thyroidectomy. A Bayesian model was designed to predict malignancy in thyroid nodules based on multivariate dependence relationships between independent covariates. Ten-fold cross-validation was performed to estimate classifier error wherein the data set was randomized into ten separate and unique train and test sets consisting of a training set (90% of records) and a test set (10% of records). A receiver-operating-characteristics (ROC) curve of these predictions and area under the curve (AUC) were calculated to determine model robustness for predicting malignancy in thyroid nodules.</p> <p>Results</p> <p>Thyroid nodule size, FNA cytology, US and EIS characteristics were highly predictive of malignancy. Cross validation of the model created with Bayesian Network Analysis effectively predicted malignancy [AUC = 0.88 (95%CI: 0.82–0.94)] in thyroid nodules. The positive and negative predictive values of the model are 83% (95%CI: 76%–91%) and 79% (95%CI: 72%–86%), respectively.</p> <p>Conclusion</p> <p>An integrated predictive decision model using Bayesian inference incorporating readily obtainable thyroid nodule measures is clinically relevant, as it effectively predicts malignancy in thyroid nodules. This model warrants further validation testing in prospective clinical trials.</p

    Updated Three-Stage Model for the Peopling of the Americas

    Get PDF
    Background: We re-assess support for our three stage model for the peopling of the Americas in light of a recent report that identified nine non-Native American mitochondrial genome sequences that should not have been included in our initial analysis. Removal of these sequences results in the elimination of an early (i.e.,40,000 years ago) expansion signal we had proposed for the proto-Amerind population. Methodology/Findings: Bayesian skyline plot analysis of a new dataset of Native American mitochondrial coding genomes confirms the absence of an early expansion signal for the proto-Amerind population and allows us to reduce the variation around our estimate of the New World founder population size. In addition, genetic variants that define New World founder haplogroups are used to estimate the amount of time required between divergence of proto-Amerinds from the Asian gene pool and expansion into the New World. Conclusions/Significance: The period of population isolation required for the generation of New World mitochondrial founder haplogroup-defining genetic variants makes the existence of three stages of colonization a logical conclusion. Thus, our three stage model remains an important and useful working hypothesis for researchers interested in the peopling of th

    Self-Reported Serious Illnesses in Rural Cambodia: A Cross-Sectional Survey

    Get PDF
    BACKGROUND: There is substantial evidence that ill-health is a major cause of impoverishment in developing countries. Major illnesses can have a serious economic impact on poor households through treatment costs and income loss. However, available methods for measuring the impact of ill-health on household welfare display several shortcomings and new methods are thus needed. To understand the potential complex impact of major illnesses on household livelihoods, a study on poverty and illness was conducted in rural Cambodia, as part of an international comparative research project. A cross-sectional survey was performed to identify households affected by major illness for further in-depth interviews. METHODOLOGY AND PRINCIPAL FINDINGS: 5,975 households in three rural health districts were randomly selected through a two-stage cluster sampling and interviewed. 27% of the households reported at least one member with a serious illness in the year preceding the survey and 15% of the household members reported suffering from at least one serious illness. The most reported conditions include common tropical infectious diseases, chronic diseases (notably hypertension and heart diseases) and road traffic accidents. Such conditions were particularly concentrated among the poor, children under five, women, and the elderly. Poor women often reported complications related to pregnancy and delivery as serious illnesses. CONCLUSIONS AND SIGNIFICANCE: Despite some methodological limitations, this study provides new information on the frequency of self-reported serious illnesses among the rural Cambodia's population, which serves as a basis for further in-depth investigation on 'major illnesses' and their economic consequences on poor households. This can in turn help policy makers to formulate appropriate interventions to protect the poor from the financial burden associated with ill-health. Our findings suggest that every year a considerable proportion of rural population in Cambodia, especially the poor and vulnerable, are affected by serious illnesses, both communicable and non-communicable diseases

    Opposite role of Bax and BCL-2 in the anti-tumoral responses of the immune system

    Get PDF
    BACKGROUND: The relative role of anti apoptotic (i.e. Bcl-2) or pro-apoptotic (e.g. Bax) proteins in tumor progression is still not completely understood. METHODS: The rat glioma cell line A15A5 was stably transfected with human Bcl-2 and Bax transgenes and the viability of theses cell lines was analyzed in vitro and in vivo. RESULTS: In vitro, the transfected cell lines (huBax A15A5 and huBcl-2 A15A5) exhibited different sensitivities toward apoptotic stimuli. huBax A15A5 cells were more sensitive and huBcl-2 A15A5 cells more resistant to apoptosis than mock-transfected A15A5 cells (pCMV A15A5). However, in vivo, in syngenic rat BDIX, these cell lines behaved differently, as no tumor growth was observed with huBax A15A5 cells while huBcl-2 A15A5 cells formed large tumors. The immune system appeared to be involved in the rejection of huBax A15A5 cells since i) huBax A15A5 cells were tumorogenic in nude mice, ii) an accumulation of CD8+ T-lymphocytes was observed at the site of injection of huBax A15A5 cells and iii) BDIX rats, which had received huBax A15A5 cells developed an immune protection against pCMV A15A5 and huBcl-2 A15A5 cells. CONCLUSIONS: We show that the expression of Bax and Bcl-2 controls the sensitivity of the cancer cells toward the immune system. This sensitization is most likely to be due to an increase in immune induced cell death and/or the amplification of an anti tumour immune respons

    Convergent Evolution in Aquatic Tetrapods: Insights from an Exceptional Fossil Mosasaur

    Get PDF
    Mosasaurs (family Mosasauridae) are a diverse group of secondarily aquatic lizards that radiated into marine environments during the Late Cretaceous (98–65 million years ago). For the most part, they have been considered to be simple anguilliform swimmers – i.e., their propulsive force was generated by means of lateral undulations incorporating the greater part of the body – with unremarkable, dorsoventrally narrow tails and long, lizard-like bodies. Convergence with the specialized fusiform body shape and inferred carangiform locomotory style (in which only a portion of the posterior body participates in the thrust-producing flexure) of ichthyosaurs and metriorhynchid crocodyliform reptiles, along with cetaceans, has so far only been recognized in Plotosaurus, the most highly derived member of the Mosasauridae. Here we report on an exceptionally complete specimen (LACM 128319) of the moderately derived genus Platecarpus that preserves soft tissues and anatomical details (e.g., large portions of integument, a partial body outline, putative skin color markings, a downturned tail, branching bronchial tubes, and probable visceral traces) to an extent that has never been seen previously in any mosasaur. Our study demonstrates that a streamlined body plan and crescent-shaped caudal fin were already well established in Platecarpus, a taxon that preceded Plotosaurus by 20 million years. These new data expand our understanding of convergent evolution among marine reptiles, and provide insights into their evolution's tempo and mode

    (R)-[11C]Verapamil PET studies to assess changes in P-glycoprotein expression and functionality in rat blood-brain barrier after exposure to kainate-induced status epilepticus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased functionality of efflux transporters at the blood-brain barrier may contribute to decreased drug concentrations at the target site in CNS diseases like epilepsy. In the rat, pharmacoresistant epilepsy can be mimicked by inducing status epilepticus by intraperitoneal injection of kainate, which leads to development of spontaneous seizures after 3 weeks to 3 months. The aim of this study was to investigate potential changes in P-glycoprotein (P-gp) expression and functionality at an early stage after induction of status epilepticus by kainate.</p> <p>Methods</p> <p><it>(R)</it>-[<sup>11</sup>C]verapamil, which is currently the most frequently used positron emission tomography (PET) ligand for determining P-gp functionality at the blood-brain barrier, was used in kainate and saline (control) treated rats, at 7 days after treatment. To investigate the effect of P-gp on <it>(R)</it>-[<sup>11</sup>C]verapamil brain distribution, both groups were studied without or with co-administration of the P-gp inhibitor tariquidar. P-gp expression was determined using immunohistochemistry in post mortem brains. <it>(R)</it>-[<sup>11</sup>C]verapamil kinetics were analyzed with approaches common in PET research (Logan analysis, and compartmental modelling of individual profiles) as well as by population mixed effects modelling (NONMEM).</p> <p>Results</p> <p>All data analysis approaches indicated only modest differences in brain distribution of <it>(R)</it>-[<sup>11</sup>C]verapamil between saline and kainate treated rats, while tariquidar treatment in both groups resulted in a more than 10-fold increase. NONMEM provided most precise parameter estimates. P-gp expression was found to be similar for kainate and saline treated rats.</p> <p>Conclusions</p> <p>P-gp expression and functionality does not seem to change at early stage after induction of anticipated pharmacoresistant epilepsy by kainate.</p

    Ordered Mesostructured CdS Nanowire Arrays with Rectifying Properties

    Get PDF
    Highly ordered mesoporous CdS nanowire arrays were synthesized by using mesoporous silica as hard template and cadmium xanthate (CdR2) as a single precursor. Upon etching silica, mesoporous CdS nanowire arrays were produced with a yield as high as 93 wt%. The nanowire arrays were characterized by XRD, N2adsorption, TEM, and SEM. The results show that the CdS products replicated from the mesoporous silica SBA-15 hard template possess highly ordered hexagonal mesostructure and fiber-like morphology, analogous to the mother template. The current–voltage characteristics of CdS nanoarrays are strongly nonlinear and asymmetrical, showing rectifying diode-like behavior

    Complete Chloroplast Genome Sequence of an Orchid Model Plant Candidate: Erycina pusilla Apply in Tropical Oncidium Breeding

    Get PDF
    Oncidium is an important ornamental plant but the study of its functional genomics is difficult. Erycina pusilla is a fast-growing Oncidiinae species. Several characteristics including low chromosome number, small genome size, short growth period, and its ability to complete its life cycle in vitro make E. pusilla a good model candidate and parent for hybridization for orchids. Although genetic information remains limited, systematic molecular analysis of its chloroplast genome might provide useful genetic information. By combining bacterial artificial chromosome (BAC) clones and next-generation sequencing (NGS), the chloroplast (cp) genome of E. pusilla was sequenced accurately, efficiently and economically. The cp genome of E. pusilla shares 89 and 84% similarity with Oncidium Gower Ramsey and Phalanopsis aphrodite, respectively. Comparing these 3 cp genomes, 5 regions have been identified as showing diversity. Using PCR analysis of 19 species belonging to the Epidendroideae subfamily, a conserved deletion was found in the rps15-trnN region of the Cymbidieae tribe. Because commercial Oncidium varieties in Taiwan are limited, identification of potential parents using molecular breeding method has become very important. To demonstrate the relationship between taxonomic position and hybrid compatibility of E. pusilla, 4 DNA regions of 36 tropically adapted Oncidiinae varieties have been analyzed. The results indicated that trnF-ndhJ and trnH-psbA were suitable for phylogenetic analysis. E. pusilla proved to be phylogenetically closer to Rodriguezia and Tolumnia than Oncidium, despite its similar floral appearance to Oncidium. These results indicate the hybrid compatibility of E. pusilla, its cp genome providing important information for Oncidium breeding
    • 

    corecore