90 research outputs found

    Chimpanzee APOBEC3 proteins deter SIVs from any monkey business

    Get PDF
    Cross-species transmissions of viruses from animals to humans are at the origin of major human pathogenic viruses. While the role of ecological and epidemiological factors in the emergence of new pathogens is well documented, the importance of host factors is often unknown. Chimpanzees are the closest relatives of humans and the animal reservoir at the origin of the human AIDS pandemic. However, despite being regularly exposed to monkey lentiviruses through hunting, chimpanzees are naturally infected by only a single simian immunodeficiency virus, SIVcpz. Here, we asked why chimpanzees appear to be protected against the successful emergence of other SIVs. In particular, we investigated the role of the chimpanzee APOBEC3 genes in providing a barrier to infection by most monkey lentiviruses. We found that most SIV Vifs, including Vif from SIVwrc infecting western-red colobus, the chimpanzee's main monkey prey in West Africa, could not antagonize chimpanzee APOBEC3G. Moreover, chimpanzee APOBEC3D, as well as APOBEC3F and APOBEC3H, provided additional protection against SIV Vif antagonism. Consequently, lentiviral replication in primary chimpanzee CD4(+) T cells was dependent on the presence of a lentiviral vif gene that could antagonize chimpanzee APOBEC3s. Finally, by identifying and functionally characterizing several APOBEC3 gene polymorphisms in both common chimpanzees and bonobos, we found that these ape populations encode APOBEC3 proteins that are uniformly resistant to antagonism by monkey lentiviruses

    Foundations of Black Hole Accretion Disk Theory

    Get PDF
    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at http://www.livingreviews.org/lrr-2013-

    Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    A search for neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is based on a sample of proton-proton collisions at a centre-of-mass energy of 7TeV recorded with the ATLAS detector at the Large Hadron Collider. The data were recorded in 2011 and correspond to an integrated luminosity of 4.7 fb-1 to 4.8 fb-1. Higgs boson decays into oppositely-charged muon or τ lepton pairs are considered for final states requiring either the presence or absence of b-jets. No statistically significant excess over the expected background is observed and exclusion limits at the 95% confidence level are derived. The exclusion limits are for the production cross-section of a generic neutral Higgs boson, φ, as a function of the Higgs boson mass and for h/A/H production in the MSSM as a function of the parameters mA and tan ÎČ in the mhmax scenario for mA in the range of 90GeV to 500 GeV. Copyright CERN

    Apc Mutation Enhances PyMT-Induced Mammary Tumorigenesis

    Get PDF
    The Adenomatous Polyposis Coli (APC) tumor suppressor gene is silenced by hypermethylation or mutated in up to 70% of human breast cancers. In mouse models, Apc mutation disrupts normal mammary development and predisposes to mammary tumor formation; however, the cooperation between APC and other mutations in breast tumorigenesis has not been studied. To test the hypothesis that loss of one copy of APC promotes oncogene-mediated mammary tumorigenesis, ApcMin/+ mice were crossed with the mouse mammary tumor virus (MMTV)-Polyoma virus middle T antigen (PyMT) or MMTV-c-Neu transgenic mice. In the PyMT tumor model, the ApcMin/+ mutation significantly decreased survival and tumor latency, promoted a squamous adenocarcinoma phenotype, and enhanced tumor cell proliferation. In tumor-derived cell lines, the proliferative advantage was a result of increased FAK, Src and JNK signaling. These effects were specific to the PyMT model, as no changes were observed in MMTV-c-Neu mice carrying the ApcMin/+ mutation. Our data indicate that heterozygosity of Apc enhances tumor development in an oncogene-specific manner, providing evidence that APC-dependent pathways may be valuable therapeutic targets in breast cancer. Moreover, these preclinical model systems offer a platform for dissection of the molecular mechanisms by which APC mutation enhances breast carcinogenesis, such as altered FAK/Src/JNK signaling

    Oncogenic Function of DACT1 in Colon Cancer through the Regulation of ÎČ-catenin

    Get PDF
    The Wnt/ÎČ-catenin signaling pathway plays important roles in the progression of colon cancer. DACT1 has been identified as a modulator of Wnt signaling through its interaction with Dishevelled (Dvl), a central mediator of both the canonical and noncanonical Wnt pathways. However, the functions of DACT1 in the WNT/ÎČ-catenin signaling pathway remain unclear. Here, we present evidence that DACT1 is an important positive regulator in colon cancer through regulating the stability and sublocation of ÎČ-catenin. We have shown that DACT1 promotes cancer cell proliferation in vitro and tumor growth in vivo and enhances the migratory and invasive potential of colon cancer cells. Furthermore, the higher expression of DACT1 not only increases the nuclear and cytoplasmic fractions of ÎČ-catenin, but also increases its membrane-associated fraction. The overexpression of DACT1 leads to the increased accumulation of nonphosphorylated ÎČ-catenin in the cytoplasm and particularly in the nuclei. We have demonstrated that DACT1 interacts with GSK-3ÎČ and ÎČ-catenin. DACT1 stabilizes ÎČ-catenin via DACT1-induced effects on GSK-3ÎČ and directly interacts with ÎČ-catenin proteins. The level of phosphorylated GSK-3ÎČ at Ser9 is significantly increased following the elevated expression of DACT1. DACT1 mediates the subcellular localization of ÎČ-catenin via increasing the level of phosphorylated GSK-3ÎČ at Ser9 to inhibit the activity of GSK-3ÎČ. Taken together, our study identifies DACT1 as an important positive regulator in colon cancer and suggests a potential strategy for the therapeutic control of the ÎČ-catenin-dependent pathway

    Changes in Gene Expression and Cellular Architecture in an Ovarian Cancer Progression Model

    Get PDF
    BACKGROUND: Ovarian cancer is the fifth leading cause of cancer deaths among women. Early stage disease often remains undetected due the lack of symptoms and reliable biomarkers. The identification of early genetic changes could provide insights into novel signaling pathways that may be exploited for early detection and treatment. METHODOLOGY/PRINCIPAL FINDINGS: Mouse ovarian surface epithelial (MOSE) cells were used to identify stage-dependent changes in gene expression levels and signal transduction pathways by mouse whole genome microarray analyses and gene ontology. These cells have undergone spontaneous transformation in cell culture and transitioned from non-tumorigenic to intermediate and aggressive, malignant phenotypes. Significantly changed genes were overrepresented in a number of pathways, most notably the cytoskeleton functional category. Concurrent with gene expression changes, the cytoskeletal architecture became progressively disorganized, resulting in aberrant expression or subcellular distribution of key cytoskeletal regulatory proteins (focal adhesion kinase, α-actinin, and vinculin). The cytoskeletal disorganization was accompanied by altered patterns of serine and tyrosine phosphorylation as well as changed expression and subcellular localization of integral signaling intermediates APC and PKCÎČII. CONCLUSIONS/SIGNIFICANCE: Our studies have identified genes that are aberrantly expressed during MOSE cell neoplastic progression. We show that early stage dysregulation of actin microfilaments is followed by progressive disorganization of microtubules and intermediate filaments at later stages. These stage-specific, step-wise changes provide further insights into the time and spatial sequence of events that lead to the fully transformed state since these changes are also observed in aggressive human ovarian cancer cell lines independent of their histological type. Moreover, our studies support a link between aberrant cytoskeleton organization and regulation of important downstream signaling events that may be involved in cancer progression. Thus, our MOSE-derived cell model represents a unique model for in depth mechanistic studies of ovarian cancer progression

    Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome

    Full text link

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering
    • 

    corecore