16 research outputs found

    Genetic prediction of male pattern baldness

    Get PDF
    Male pattern baldness can have substantial psychosocial effects, and it has been phenotypically linked to adverse health outcomes such as prostate cancer and cardiovascular disease. We explored the genetic architecture of the trait using data from over 52,000 male participants of UK Biobank, aged 40-69 years. We identified over 250 independent genetic loci associated with severe hair loss (P<5x10-8). By splitting the cohort into a discovery sample of 40,000 and target sample of 12,000, we developed a prediction algorithm based entirely on common genetic variants that discriminated (AUC = 0.78, sensitivity = 0.74, specificity = 0.69, PPV = 59%, NPV = 82%) those with no hair loss from those with severe hair loss. The results of this study might help identify those at greatest risk of hair loss, and also potential genetic targets for intervention

    Association of Transcription Factor 4 (TCF4) variants with schizophrenia and intellectual disability

    Full text link
    Genome wide association studies (GWAS) have revolutionized the study of complex diseases and have uncovered common genetic variants associated with an increased risk for major psychiatric disorders. A recently published schizophrenia GWAS replicated earlier findings implicating common variants in Transcription factor 4 (TCF4) as susceptibility loci for schizophrenia. By contrast, loss of function TCF4 mutations, although rare, cause Pitt-Hopkins syndrome (PTHS); a disorder characterized by intellectual disability (ID), developmental delay and behavioral abnormalities. TCF4 mutations have also been described in individuals with ID and non-syndromic neurodevelopmental disorders. TCF4 is a member of the basic helix-loop-helix (bHLH) family of transcription factors that regulate gene expression at E-box-containing promoters and enhancers. Accordingly, TCF4 has an important role during brain development and can interact with a wide array of transcriptional regulators including some proneural factors. TCF4 may, therefore, participate in the transcriptional networks that regulate the maintenance and differentiation of distinct cell types during brain development. Here, we review the role of TCF4 variants in the context of several distinct brain disorders associated with impaired cognition

    Disease-causing variants in TCF4 are a frequent cause of intellectual disability: lessons from large-scale sequencing approaches in diagnosis

    Get PDF
    IF 3.636 (2017)International audienceHigh-throughput sequencing (HTS) of human genome coding regions allows the simultaneous screen of a large number of genes, significantly improving the diagnosis of non-syndromic intellectual disabilities (ID). HTS studies permit the redefinition of the phenotypical spectrum of known disease-causing genes, escaping the clinical inclusion bias of gene-by-gene Sanger sequencing. We studied a cohort of 903 patients with ID not reminiscent of a well-known syndrome, using an ID-targeted HTS of several hundred genes and found de novo heterozygous variants in TCF4 (transcription factor 4) in eight novel patients. Piecing together the patients from this study and those from previous large-scale unbiased HTS studies, we estimated the rate of individuals with ID carrying a disease-causing TCF4 mutation to 0.7%. So far, TCF4 molecular abnormalities were known to cause a syndromic form of ID, Pitt–Hopkins syndrome (PTHS), which combines severe ID, developmental delay, absence of speech, behavioral and ventilation disorders, and a distinctive facial gestalt. Therefore, we reevaluated ten patients carrying a pathogenic or likely pathogenic variant in TCF4 (eight patients included in this study and two from our previous ID-HTS study) for PTHS criteria defined by Whalen and Marangi. A posteriori, five patients had a score highly evocative of PTHS, three were possibly consistent with this diagnosis, and two had a score below the defined PTHS threshold. In conclusion, these results highlight TCF4 as a frequent cause of moderate to profound ID and broaden the clinical spectrum associated to TCF4 mutations to nonspecific ID
    corecore