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Abstract

Background: Analysis and interpretation of biological networks is one of the primary goals of systems biology. In
this context identification of sub-networks connecting sets of seed proteins or seed genes plays a crucial role.
Given that no natural node and edge weighting scheme is available retrieval of a minimum size sub-graph leads to
the classical Steiner tree problem, which is known to be NP-complete. Many approximate solutions have been
published and theoretically analyzed in the computer science literature, but far less is known about their practical
performance in the bioinformatics field.

Results: Here we conducted a systematic simulation study of four different approximate and one exact algorithms
on a large human protein-protein interaction network with ~14,000 nodes and ~400,000 edges. Moreover, we
devised an own algorithm to retrieve a sub-graph of merged Steiner trees. The application of our algorithms was
demonstrated for two breast cancer signatures and a sub-network playing a role in male pattern baldness.

Conclusion: We found a modified version of the shortest paths based approximation algorithm by Takahashi and
Matsuyama to lead to accurate solutions, while at the same time being several orders of magnitude faster than the
exact approach. Our devised algorithm for merged Steiner trees, which is a further development of the Takahashi
and Matsuyama algorithm, proved to be useful for small seed lists. All our implemented methods are available in
the R-package SteinerNet on CRAN (www.r-project.org) and as a supplement to this paper.
Background
Analysis of biological networks is one of the primary goals
of systems biology [1]. Databases, like KEGG [2], HPRD
[3] and PathwayCommons [4] nowadays store tens of
thousands of literature reported molecular interactions
and thus facilitate the interpretation of biological data.
One particular aspect within this context is the construc-
tion of sub-networks connecting specified seed genes or
proteins of biological interest. Whereas an obvious way to
address this problem is to enumerate and join all possible
shortest paths between the molecules of interest [5,6], this
solution is not guaranteed to produce minimal sub-
networks. Inclusion of large numbers of auxiliary nodes
and edges in addition to the ones of primary interest, how-
ever, can greatly complicate the visualization and inter-
pretation of the constructed sub-networks.
The task of identifying an optimal sub-network for a

given set of seed genes or proteins can be viewed as an
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instance of the Steiner tree [7] or the Prize Collecting
Steiner tree problem [8], depending on whether or not
additional weights for nodes (seen as profits) and edges
(seen as costs) are available. Briefly, a Steiner tree is a
sub-graph connecting all seed nodes (called terminals)
within the original molecular interaction network. The
Steiner tree problem is to find a Steiner tree of minimal
size, i.e. minimal number of edges. This problem is
known to be NP-complete [9]. The same holds true for
the Prize Collecting Steiner tree (PCST) problem, where
the task is to find a Steiner tree with maximal profit at
minimal cost.
Several authors have noticed the relationship between

optimal sub-network identification in molecular networks
and the (Prize Collecting) Steiner tree problem [10-15].
Most of these authors focused on weighted networks,
leading to the PCST problem: Scott et al. [10] showed that
an approximate PCST algorithm could recover known
regulatory interaction networks responding to heat shock
in yeast with high accuracy. Dittrich et al. employed an
exact approach using integer linear programming to
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identify disease related sub-networks in cancer [12]. The
method has been made publicly available in the
Bioconductor R-package BioNet [16]. Tuncbag et al. [17]
recently also published a web service for biological net-
work analysis using an exact algorithm for the PCST prob-
lem. Bailly-Bechet al. [15] proposed to approximate the
PCST problem via belief propagation and applied it suc-
cessfully to identify sub-networks responding to drug per-
turbations in yeast. Huang and Fraenkel [11] used an
exact PCST algorithm to determine a protein interaction
network playing a role in yeast pheromone response.
In this paper we focus on the classical Steiner tree

problem in unweighted graphs. This problem appears, if
people want to query molecular interaction databases
with a list of seed proteins in order to get some under-
standing about their possible interplay, but there is no
reasonable node weighting scheme available, because
there is no experimental data, which can be mapped on
the network, or because the interaction database does
not contain edge confidence scores. Most currently
available interaction databases (e.g. PathwayCommons,
HPRD, KEGG) do not contain edge confidence values.
An important difference of the classical to the PCST
problem is that in a PCST solution there is no guarantee
that all seed nodes are included. In contrast, in the clas-
sical Steiner tree problem that is the case. The classical
Steiner tree problem is hence more natural for sub-
network identification in the lack of any suitable node
weighting scheme.
Molecular interaction networks can be quite large-we

here used a human protein interaction network with
more than ~13,000 nodes and ~400,000 edges. Thus
exact algorithms can become quickly impractical, and
hence approximate solutions are of high interest.
Whereas in theoretical computer science the Steiner tree
problem is principally well studied, there is little known
about the practical performance of heuristic algorithms
in real biological networks. We thus set up a simulation
study to address the following questions:

1. How accurate are our tested heuristic methods
compared to an exact solution?

2. How do these heuristics compare to each other in
terms of the solution quality and run time?

3. How can we determine several solutions of equal
quality/size in an efficient way?

The last questions attributes the fact that the solution
to the Steiner tree problem is not necessarily unique
(see Methods part for an example). That means there
can principally exist several Steiner trees of equal size,
and without any further knowledge there is absolutely
no reason to prefer one over another solution. To our
best knowledge the problem of multiple solutions is not
well studied. Besides an exact solution we here propose
a straight forward extension of the shortest paths heuris-
tic by Takahashi and Matsuyama [18] for this purpose.
After extensive simulation studies we investigated

three real life scenarios: First, the interplay between an-
drogen receptor (AR) and HDAC9 in the context of male
pattern baldness [19]. Second, the well-known 70-gene
signature for breast cancer prognosis by van't Veer et al.
[20], and third, the 286-gene invasive breast cancer sig-
nature by Wang et al. [21]. We show that the (extended)
shortest paths heuristic provides clearly interpretable re-
sults in all three cases.

Methods
Protein-protein interaction network
A protein interaction network was compiled from a mer-
ger of all non-metabolic KEGG pathways [2]. Only gene
nodes were considered together with the Pathway Com-
mons database [4], which was downloaded in tab-
delimited format (May 2010). The purpose was to obtain
an as much as possible comprehensive network of known
protein interactions. For the Pathway Commons database
the SIF interactions INTERACTS WITH and STATE
CHANGE were taken into accounta and any self loops re-
moved. For retrieval and merger of KEGG pathways, we
employed the R-package KEGGgraph [22]. All edge direc-
tions were ignored, resulting in a network graph of 13,840
nodes and 397,454 edges. Nodes in this network were
identified via Entrez gene IDs. The largest connected com-
ponent of this graph, which we considered for the follow-
ing had 13,340 nodes and 397,366 edges.

Problem formulation
The Steiner tree problem is defined as follows [7]: Given
a graph G = (V, E) and a set of terminal nodes S ⊆V find
a sub-graph G′ = (V′, E′) of G, such that

1. S ⊆V′ ⊆V and E′ ⊆ E
2. There exists a path between every pair of terminals

in G′.

The set of auxiliary nodes N :=V′ \ S is called non-ter-
minals. A Steiner tree is called minimal if |E′| is
minimal.

Exact algorithm
Multiple approaches have been devised to retrieve exact
solutions for the Steiner tree problem. All these algo-
rithms have a run time, which is scaling exponentially
with the number of nodes in the graph and are hence
difficult to scale up to larger biological networks. They
investigate all possible Steiner trees in order to find a
minimal one. Examples of exact algorithms include the
one by Lawler [23], which works on distance networks,
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the one by Balakrishnan and Patel [24], which is formu-
lated as a degree constrained sub-graph problem, and the
dynamic programming approaches by Dreyfus [25] and
Levin [26]. Also branch and bound approaches [27-30]
and linear programming solutions have been devised [31].
Here, we implemented a minimal spanning tree based

algorithm, which has been described by Hakimi [32].
Briefly, the idea is to investigate all possible subsets of
nodes, which include all |S| terminals. If there exists a
minimum spanning tree between these nodes, then this
tree is a candidate solution for the Steiner tree problem.
By exhaustively searching through all possible subsets
we are guaranteed to find the optimal solution. There

are ∑ Sj j−2
i¼o

V− Sj j
i

� �
≤ 2V− Sj j minimum spanning trees to be

determined in this approach. It has to be noted here that
in case of an unweighted graph every spanning tree is
also a minimum spanning tree. Every spanning tree
over n nodes contains exactly n-1 edges. Hence it is suffi-
cient to test for each candidate subset A of nodes, whether
they form a connected sub-graph of G of size n - 1.
Testing, whether nodes A form a connected sub-graph
can be done in linear time via a depth first or a breadth
first search [7].

Shortest paths based approximation (SP)
A relatively simple but effective [33] heuristic approach
to obtain an approximate solution for the Steiner tree
problem is based on shortest path computations be-
tween terminals. Takahashi and Matsuyama [18] sug-
gested this method in 1980 and proved the size of the
resulting Steiner tree to be upper bounded by 2 − 2/|S|
times the size of the minimal Steiner tree. The algorithm
starts with one arbitrarily picked terminal s. Then it se-
lects a terminal node t with shortest path distance to s
(note that there could be several ones). The shortest
path from s to t (including s itself ) is now regarded as a
sub-graph G′ of G. The algorithm proceeds by finding a
terminal node k with shortest path distance to all nodes
in G and merging the corresponding path with G′
Figure 1 Illustration of the shortest paths heuristic: The algorithm sta
(f) closest to a is picked and the shortest paths connecting a to f added to
finding the terminal (g) closest to all nodes in G’. Accordingly, the shortest
(Figure 1). This step is repeated until all terminals have
been included into G′. Rayward-Smith and Clare [34]
improved this algorithm further by returning the mini-
mum spanning tree on G′ and removing all non-
terminal nodes of degree one.
The result of the shortest path method depends on the

selected start node. Winter and Smith [35] thus suggested
to repetitively construct Steiner trees with different ran-
domly chosen start nodes (here: 10). The whole algorithm
is shown in pseudo-code 1. The computationally bottle-
neck is the computation of pairwise shortest path distances
in an unweighted graph (line 7). Using a depth- first search
this step has a complexity of O(|V| + |E|) [7], because we
can look for all terminals not in G′ at once. Hence the
whole loop is of O(r|S|(|V| + |E|)). The number r of repeats
was set to 10 here.
Minimum spanning tree based approximation (KB)
A second heuristic approach, which we tested here, has a
certain similarity to Kruskal's minimum spanning tree al-
gorithm [36] and is described by Wang [37]. The algo-
rithm starts by initially considering each terminal as a
separate graph. Then sequentially those sub-graphs are
merged, which are closest to each other. The distance of
two sub-graphs f

i
; f

j
is measured by the minimal shortest

path distance betweenany pair of nodes in fi and fj.
Pseudo-code 2 shows the algorithm called Kruskal-Based
heuristic here. In our implementation we added the two
optimization steps by Rayward et al. [34] described previ-
ously for the shortest path heuristic. The size of the KB
constructed Steiner tree is at most 2–2/|l| times the size
of the minimal Steiner tree, where l is the number of
leaves in the minimal Steiner tree [38,39]. The computa-
tional bottleneck is line 5. Using again a depth or breadth
first search strategy the necessary shortest path computa-
tions can be done in O(|V| + |E|) per individual fi. Hence
line 5 takes O(|S|(|V| + |E|)). Furthermore, in the worst
case the loop has to be executed |S| times until all termi-
nals appear in one sub-graph fi. Therefore, the whole
rts with an arbitrarily picked terminal a (left). Then the terminal
the temporary Steiner tree G′ (middle). The algorithm proceeds by
path from f to g is added to G′ (right).



Algorithm 1 Shortest path heuristic with additional steps by Reyward-Smith and Claire in lines 12 and 13
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algorithm has time complexity O(|S|2(|V| + |E|)), which is
inferior to the SP method, if r < |S|.

Randomized all shortest paths approximation (RSP)
In addition to the afore mentioned two heuristic methods
we experimented with an own approach, which is a ran-
domized algorithm. The idea is to start with the sub-graph
G* consisting of all nodes and edges appearing on shortest
Algorithm 2 Kruskal — Based Huerisric with add
paths between terminals. A minimum spanning tree T is
constructed on G*. Afterwards randomly a non-terminal
node ν ∈G* is selected and removed from G*, unless G*
would fall into two connected components. Then a mini-
mum spanning tree over the remaining sub-graph G* \ {v}
is constructed. If this spanning tree has a smaller size than
T, the removal of the node is accepted, otherwise rejected.
Similarly the algorithm tests, whether the insertion of
itional stepsby Rayward et al. inlines 9 and 10
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randomly picked non-terminals from the complement
graph G \G* would decrease the size of the minimum
spanning tree. The whole procedure is repeated r times
(here: 70) and shown in pseudo-code 3. We also tried larger
values of r without observing significant differences to the
results presented here.
In each loop the algorithm has to construct a minimum

spanning tree, which can be done in O(|E| log |V|) time via
Kruskal's algorithm [7]. Determination of all terminals
within max_len distance can be performed in O(|V| + |E|)
time via a breadth- first search. Hence, the loop costs
O(|E| log |V| + |V| + |E|) time.
Pre-computation of the all shortest paths between termi-

nals (line 3) is doable in O(|S|(|V| + |E|)) (see above).
Therefore, the overall computational cost of the algorithm
is O((r + |S|)(|V| + |E|) + r|E| log(|V|)).

All shortest paths between terminals (ASP)
For comparison reasons we also included a trivial method,
in which a sub-graph consisting of pairwise shortest paths
between terminals was computed. The run time complexity
for finding all pairwise shortest paths is O(|S|(|V| + |E|)), as
described above. Merging all paths (lists of node sequences
for each terminal) into one graph additionally requires O(|
S|2|V|) edge insertions. Such a step can be circumvented in
the implementation of the other algorithms.

Sub-graph of merged minimal steiner trees
For a given Steiner tree problem there can principa-
lly exist several solutions of the same size. As an ex-
ample consider the graph in Figure 2. Suppose AR and
HDAC9 are the two terminals, then obviously any of the
Steiner trees AR-NRPI1-HDAC9, AR-HDAC1-HDAC9,
AR-HDAC3-HDAC9, AR-NCOR1-HDAC9, AR-SUMO1-
Figure 2 AR - HDAC9 interaction network.
HDAC9, AR-NCOR12-HDAC9 and AR-HDAC4-HDAC9
have exactly the same minimal size. From a biological
point of view and without any further information there
is absolutely no reason to prefer one of these Steiner
trees over another one.
Hence, we should consider all possible solutions of the

same size as equally relevant.
Taking this into account we here implemented a modi-

fication of the exact algorithm, in which all Steiner trees
of minimal size are returned. Obviously the worst-time
run time complexity is unaffected by this modification.
Afterwards all Steiner trees are merged to one sub-graph,
which is then further considered.

Sub-graph of merged steiner trees (STM)
Since the exact algorithm has an exponential run time
complexity and is therefore limited in its practical applic-
ability we also implemented a straight forward modification
of the shortest path heuristic (Pseudo-code 1) for comput-
ing a sub-graph containing several Steiner trees of possibly
same size: Instead of arbitrarily picking one of the terminals
with equal shortest path distance to all nodes in sub-graph
G′ we select all (line 7). Then we join all possible shortest
paths to these nodes to G′ (line 8). The sub-graph G′ at
the end will thus contain a merger of several Steiner trees.

Performance measures
Let G′ = (V, E) be the Steiner tree sub-graph constructed
by one of our tested algorithms and S the set of terminal
nodes. We evaluated the quality of a solution based on
the following two criteria:

� Number of edges, |E| of the Steiner tree
� Terminal frequency, defined as Sj j

Vj j



Algorithm 3 Pseudo code of randomized all shortest paths approximation
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In addition we looked at the raw computation time,
which was determined on an 8 core Intel Xeon system
with 2.8 GHz and 90GB RAM.

Results
Simulations
Experimental setup
To simulate the behavior of each of our tested algorithms
(4 heuristic, one exact) we compiled a large protein-protein
interaction for human comprising ~13,000 nodes and
~400,000 edges (see Methods). In order to generate seed
lists of proteins within this network, we randomly picked a
start node and then conducted a random walk, in which
with a given probability θ = 0.5 each visited node was de-
clared to be a terminal. The random walk was terminated
once a predefined number of terminals had been collected.
This process was repeated 50 times, and each time our
tested algorithms were asked to construct the Steiner tree.

Shortest paths based approximation outperforms other
heuristics
We first addressed the question, which of our four tested
heuristics (SP, KB, RSP, ASP) performed best with re-
spect to the size and the terminal frequency of
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reconstructed Steiner trees (see Methods part for defini-
tions). This was done for terminal sets with 5, 8, 20, 50,
70 and 150 proteins.
Our experiment showed that Steiner trees constructed

with the SP, KB and RSP heuristics were significantly
smaller than those constructed with the ASP method
(Figure 3). At the same time the terminal frequency was
clearly higher than with the ASP method (Figure 4). Our
RSP algorithm performed similar to the SP and KB
methods for |S| ≤ 50, but had clearly a higher computation
time (Figure 5). For |S| ≥ 70 RSP yielded significantly lar-
ger Steiner trees with lower terminal frequency than the
SP algorithm (p < 0.05, paired Wilcoxon signed rank test
with Holm's correction for multiple testing). For |S| ≥ 70
terminals the SP algorithm lead to significantly better so-
lutions than the KB method with respect to the number of
edges as well as the edge frequency (p < 0.05), otherwise
no significant differences could be observed.
The ASP algorithm empirically showed the worst time

scaling behavior among all approximate approaches,
which can be explained by the high number of edge in-
sertions (see above). For |S| = 50 it became so slow that
we had to exclude it from our comparison.
Taken together our SP algorithm lead to the highest

quality solutions. In our implementation the KB algo-
rithm was faster than SP, but at the cost of a worse qual-
ity of solutions for higher number of terminals. In
summary the SP algorithm was our overall preferred
heuristic due its good compromise between solution
quality and computational speed.

Comparison to an exact and approximate PCST algorithm
We compared the performances of our approximate
Steiner tree methods to an exact as well as to an ap-
proximate algorithm for the PCST problem. In contrast
to the algorithms tested in the last sub-section, the
PCST problem deals with weighted graphs, which yields
a different algorithmic problem. As an exact PCST algo-
rithm we employed the implementation provided in the
R-package BioNet [16], which is based on Integer Linear
Programming (ILP) and uses the IBM CPLEX solver.
The R-package BioNet contains a wrapper for a
C++−code, which compiles the ILP in the format required
by CPLEX and returns the solution to the R interface. As
an approximate PCST method we used the belief propaga-
tion algorithm (BP) by Bailly-Bechet et al. [15], which can
be downloaded as a C++ code from their homepage. As a
node weighting scheme we used +1 for terminals and −1
for non-terminals in both cases.
Our simulation showed that the exact PCST algorithm

(PCST) yielded significantly smaller networks than all
approximate Steiner tree algorithms (Figures 3 and 4).
However, the computation time was two orders of mag-
nitude higher, although the implementation is mainly in
C++ compared to pure R for the approximate ST
methods tested here (Figure 5). For |S| ≥ 50 the PCST
method became so slow that we had to exclude it from
further comparisons. Moreover, one has to take into ac-
count that the PCST algorithm does not guarantee all
terminals to be included into identified sub-networks
(Figure 6).
Not very surprisingly, the belief propagation algorithm

(BP) was significantly faster than the exact PCST
method, specifically for larger networks (Figure 5).
Nonetheless, for |S| ≤ 70 BP was slower than SP. Again
it is to be emphasized here that BP is a highly optimized
C++ implementation, whereas the SP method is just
implemented in R. Similar to the exact PCST algorithm
the BP method yielded significantly smaller sub-
networks than all approximate Steiner tree approaches
(Figures 3 and 4). However, at the same time the fraction
of terminals included into the final solution of the BP
method varied between 80 to 100%, depending on the
number of terminals (Figure 7).
Comparison to exact steiner tree algorithm
We next investigated the accuracy of the best of our
tested Steiner tree heuristics, namely the shortest paths
based algorithm, in comparison to the exact Steiner tree
algorithm. Since the exact algorithm becomes infeasible
slow for networks with more than ~50 nodes we sam-
pled sub-graphs with at most 30 nodes from our
complete network. This was done via our above de-
scribed random walk. Visited nodes, including all their
incident edges and neighbors were joined into one sub-
graph. The process was continued until at least 30 nodes
were contained in the sub-graph. At the same time ter-
minals were selected as described before. We investi-
gated terminal sets with 5 and 8 proteins. Figure 7
shows the size distributions of sampled sub-graphs for
both cases.
No significant difference in terms of terminal fre-

quency and Steiner tree sizes could be observed between
the SP and the exact algorithm, which was ~4 orders of
magnitude faster (Figures 8, 9, 10, 11).
Merged steiner trees
Finally we compared our modified shortest paths based
approximation producing a sub-graph of merged Steiner
trees (STM) against the exact approach. The same simu-
lation setup as described in the last section was
employed. Similar to before this comparison revealed no
significant difference between STM and the exact algo-
rithm, while at the same time STM was almost 3 orders
of magnitude faster (Figures 12, 13, 14).
Compared to the ASP algorithm, which joins all

shortest paths between terminals, the STM method



Figure 3 Size (|E|) of constructed sub-networks with different heuristic Steiner tree algorithms, the exact PCST method and the belief
propagation approximation (BP). For |E|≥ 50 the PCST algorithm became impractical slow. The same was true for the ASP algorithm for |E| = 150.
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Figure 4 Terminal frequency (|S|/|V|) of constructed sub-networks with different heuristic Steiner tree algorithms, the exact PCST
method and the belief propagation approximation (BP). For |E|≥ 50 the PCST algorithm became impractical slow. The same was true for the
ASP algorithm for |E| = 150.
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Figure 5 Computation time (s) of different heuristic Steiner algorithms, the exact PCST method and the belief propagation
approximation (BP) on log_{1 0} scale. For |E|≥ 50 the PCST algorithm became impractically slow. The same was true for the ASP algorithm
for |E| = 150.
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Figure 6 Fraction of terminals included into the solution of the PCST problem (exact method).
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Figure 7 Fraction of terminals included into the solution of the PCST problem (belief propagation).

Figure 8 Size of sampled sub-networks (number of nodes).
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Figure 9 Comparison of the SP approximation to the exact solution: network size (|E|).
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produced significantly smaller sub-graphs with higher
terminal frequency (Figures 11 and 12).
Dependency of simulation results on terminal selection
probability
We investigated, in how far our shown simulation re-
sults were dependent on the terminal selection probabil-
ity, which affects, how close terminals are to each other.
The larger the smaller the distance between terminals.
We repeated the whole set of simulations presented here
with θ = 0.2 and θ = 0.8 (see Additional file 1). In both
cases SP was statistically significant outperforming the
KB algorithm for |S| ≥ 50. Only in one case (|S| = 8 and
θ = 0.2) the SP algorithm was leading to significantly
worse solutions than the exact algorithm, otherwise no
major differences could be detected. Moreover, our STM
Figure 10 Comparison of the SP approximation to the exact solution
method was always leading to solutions at comparable
quality to the exact algorithm.
Male pattern baldness
In a recent GWAS study HDAC9 was found to be asso-
ciated with male pattern baldness [19]. Mining known
protein-protein interactions via PathwayCommons [4]
and with the help of the commercial software
MetaCoreTM the authors established an indirect connec-
tion of HDAC9 to the androgen receptor (AR). We used
both, our approximate STM as well as the exact algo-
rithm to construct a sub-graph of merged Steiner trees
between HDAC9 and the AR (Figure 2). Both algorithms
produced exactly the same result, which highlights mul-
tiple indirect interactions on protein level between both
molecules.
: terminal frequency (|S| = |V|).



Figure 11 Comparison of the SP approximation to the exact solution: computation time.
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70-Gene prognostic breast cancer signature
The well known 70 gene signature for bad vs. good breast
cancer prognosis established by van't Veer et al. [20] was
downloaded from GeneSigDB [40]. 38 genes from the ori-
ginal signature could be mapped to our network. Application
of the SP algorithm yielded a sub-network with 64 proteins
Figure 12 Merged Steiner Trees: Comparison of the ASP and STM app
(Figure 15), compared to 65 proteins with the KB, 68 pro-
teins with the RSP and 61 proteins with the BP algorithm
(2 Figures in Additional file 1). The network obtained by the
exact PCST algorithm had only 40 nodes, but contained just
28 out of 38 terminals (see Additional file 1). A Gene
Ontology (GO) [41] analysis using a hyper-geometric test
roximations to the exact solution in terms of network size (|E|).



Figure 13 Merged Steiner Trees: Comparison of the ASP and STM approximations to the exact solution in terms of terminal frequency
(|S| = |V|).
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conditioned on the GO structure [42] was applied to the net-
work retrieved via the SP algorithm and revealed a signifi-
cant enrichment of cell cycle genes (p < 0.05).

286-Gene invasive breast cancer signature
As a third show case we investigated the 286 gene signa-
ture published by Wang et al. [21], which correlates with
Figure 14 Merged Steiner Trees: Comparison of the ASP and STM app
poor prognosis in invasive breast cancer. Again the sig-
nature was downloaded from GeneSigDB. 170 genes
from the original signature could be mapped to our net-
work. Application of the SP algorithm yielded a sub-
network with 282 proteins (Figure 16), compared to 283
with the KB, 289 proteins with the RSP and 255 proteins
with the BP algorithm (see Additional file 1). The exact
roximations to the exact solution in terms of computation time.



Figure 15 Sub-network reconstructed by the SP algorithm for the prognostic 70 gene breast cancer signature (gray = terminal nodes).
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PCST algorithm was stopped after one week of computa-
tion without result. The SP network was found to be
enriched for cell localization, positive regulation of trans-
ferase activity, regulation of hormone levels, insulin secre-
tion and cellular component morphogenesis (all p < 0.05).
Transferase activity has been shown to be related to breast
cancer [43] as well as the level of insulin secretion [44].

Discussion and conclusion
Identification of an optimal sub-network connecting a
list of seed proteins provides valuable insights for the in-
terpretation of experimental data, setting up system
biological models, planning novel experiments as well as
generating prior knowledge for advanced statistical
learning methods. Steiner tree algorithms provide a the-
oretically well founded approach to address this task.
Whereas in the computer science literature Steiner tree
methods have been theoretically well studied, their prac-
tical application to large molecular interaction networks
has not been investigated systematically. This is specific-
ally relevant in the light of the NP completeness of the
Steiner tree problem, which makes exact algorithms in
many cases impractical. Here we tried to fill this gap via
an empirical study comparing different approximate



Figure 16 Sub-network reconstructed by the SP algorithm for the 286 gene invasive breast cancer signature (gray = terminal nodes).
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Steiner tree algorithms with each other as well as to an
exact algorithm. We specifically focused on the sub-
network identification problem in unweighted graphs.
Our systematic simulations revealed that a modified ver-
sion of the shortest paths based heuristic by Takahashi
and Matsuyama yielded satisfactory solutions at a rea-
sonable computational effort, which was several orders
of magnitude below that of an exact solution. Compared
to using the belief propagation method by Bailly-Bechet
al. or other algorithms solving the PCST problem this
has the advantage that the inclusion of all terminal
nodes in the solution can be guaranteed. There is no
need to define a node weighting scheme, which in the
absence of any clear information always becomes rather
arbitrary. Of course, this situation changes, if experimen-
tal data allows the specification of a weighted graph in
an obvious manner. In such a case application of PCST
methods becomes much more natural and has proven to
be useful in several papers [10,15]. Nonetheless, one
should even then still be aware of the fact that the solu-
tion does not necessarily contain all terminal nodes.
We demonstrated the usefulness of approximate

Steiner tree methods in two breast cancer studies. Appli-
cation of the shortest path algorithm here lead to com-
pact and at least in case of the 286 gene signature also
to clearly biologically interpretable networks.
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In contrast to most other authors we also payed atten-
tion to the fact that Steiner trees of a given size are not
necessarily unique. This was demonstrated via an ex-
ample from a GWAS study regarding male pattern bald-
ness here. We proposed an own heuristic algorithm,
which was a further modification of the shortest path
based heuristic, for this purpose. Our method was found
to be highly accurate and significantly faster than an
exact approach. It should be noted, however, that our
STM algorithm is typically an order of magnitude slower
than the SP method, which only finds one Steiner tree.
It is thus only recommended for small seed lists.
We have implemented all of our methods in an R-

package SteinerTree, which is freely available from the
CRAN repository (www.r-project.org) and as a supple-
ment to this paper (Additional file 2).

Endnotes
ahttp://www.pathwaycommons.org/pc/sif_interaction_

rules.do.
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