369 research outputs found

    Microgreens: from trendy vegetables to functional food and potential nutrition security resource

    Get PDF
    Starting as trendy high-value gourmet greens, today, microgreens have gained great popularity among consumers for their nutritional profile and high content of antioxidant compounds. Microgreens’ nutritional profile is associated with the rich variety of colors, shapes, textural properties, and flavors obtained from sprouting a multitude of edible vegetable species, including herbs, herbaceous crops, and neglected wild edible species. Grown in a variety of soilless production systems, over the last five years in many urban and peri-urban areas of the world, microgreens have literally exploded as a cash crop produced in various protected culture systems and especially indoors through the use of artificial lighting systems. The ability to grow microgreens indoors in very small space, the short growth cycle required, and only minimum inputs required to produce them may allow the micro-scale production of fresh and nutritious vegetables even in areas that are considered food deserts. The current COVID-19 pandemic revealed the vulnerability of our food system and the need to address malnutrition issues and nutrition security inequality which could be exacerbated by potential future situations of emergency or catastrophe. Microgreens have great potential as an efficient food resilience resource, since they can provide essential nutrients and antioxidants. Using simple soilless production systems, seeds, and minimal inputs, nutrient-dense microgreens and shoots may be produced under different lighting conditions ranging from darkness to full sunlight or under artificial lighting in controlled environmental conditions, providing a rich source of essential nutrients and antioxidant compounds in a very short time. Moreover, using simple agronomic techniques, it is possible to produce biofortified or tailored functional micro-vegetables that could address specific dietary needs and/or address micronutrient deficiencies and nutrition security issues in emergency situations or limiting environmental conditions.Contribution of F. Di Gioia have been supported by the Food Resilience in the Face of Catastrophic Global Events grant funded by Open Philanthropy and by the USDA National Institute of Food and Agriculture and Hatch Appropriations under Project #PEN04723 and Accession #1020664.info:eu-repo/semantics/publishedVersio

    Integrating metabolomics and targeted gene expression to uncover potential biomarkers of fungal/oomycetes-associated disease susceptibility in grapevine

    Get PDF
    Vitis vinifera, one of the most cultivated fruit crops, is susceptible to several diseases particularly caused by fungus and oomycete pathogens. In contrast, other Vitis species (American, Asian) display different degrees of tolerance/resistance to these pathogens, being widely used in breeding programs to introgress resistance traits in elite V. vinifera cultivars. Secondary metabolites are important players in plant defence responses. Therefore, the characterization of the metabolic profiles associated with disease resistance and susceptibility traits in grapevine is a promising approach to identify trait-related biomarkers. In this work, the leaf metabolic composition of eleven Vitis genotypes was analysed using an untargeted metabolomics approach. A total of 190 putative metabolites were found to discriminate resistant/partial resistant from susceptible genotypes. The biological relevance of discriminative compounds was assessed by pathway analysis. Several compounds were selected as promising biomarkers and the expression of genes coding for enzymes associated with their metabolic pathways was analysed. Reference genes for these grapevine genotypes were established for normalisation of candidate gene expression. The leucoanthocyanidin reductase 2 gene (LAR2) presented a significant increase of expression in susceptible genotypes, in accordance with catechin accumulation in this analysis group. Up to our knowledge this is the first time that metabolic constitutive biomarkers are proposed, opening new insights into plant selection on breeding programsinfo:eu-repo/semantics/publishedVersio

    Qualitative Properties of Magnetic Fields in Scalar Field Cosmology

    Get PDF
    We study the qualitative properties of the class of spatially homogeneous Bianchi VI_o cosmological models containing a perfect fluid with a linear equation of state, a scalar field with an exponential potential and a uniform cosmic magnetic field, using dynamical systems techniques. We find that all models evolve away from an expanding massless scalar field model in which the matter and the magnetic field are negligible dynamically. We also find that for a particular range of parameter values the models evolve towards the usual power-law inflationary model (with no magnetic field) and, furthermore, we conclude that inflation is not fundamentally affected by the presence of a uniform primordial magnetic field. We investigate the physical properties of the Bianchi I magnetic field models in some detail.Comment: 12 pages, 2 figures in REVTeX format. to appear in Phys. Rev.

    Growth inhibitory effects of 3′-nitro-3-phenylamino nor-beta-lapachone against HL-60: A redox-dependent mechanism

    Get PDF
    AbstractIn this study, the cytotoxicity, genotoxicity and early ROS generation of 2,2-dimethyl-(3H)-3-(N-3′-nitrophenylamino)naphtho[1,2-b]furan-4,5-dione (QPhNO2) were investigated and compared with those of its precursor, nor-beta-lapachone (nor-beta), with the main goal of proposing a mechanism of antitumor action. The results were correlated with those obtained from electrochemical experiments held in protic (acetate buffer pH 4.5) and aprotic (DMF/TBABF4) media in the presence and absence of oxygen and with those from dsDNA biosensors and ssDNA in solution, which provided evidence of a positive interaction with DNA in the case of QPhNO2. QPhNO2 caused DNA fragmentation and mitochondrial depolarization and induced apoptosis/necrosis in HL-60 cells. Pre-treatment with N-acetyl-l-cysteine partially abolished the observed effects related to the QPhNO2 treatment, including those involving apoptosis induction, indicating a partially redox-dependent mechanism. These findings point to the potential use of the combination of pharmacology and electrochemistry in medicinal chemistry

    Vascular wilt of teak (Tectona grandis) caused by Fusarium oxysporum in Brazil

    Get PDF
    Commercial plantations of teak (Tectona grandis L.f.) are affected by many economically important fungal diseases under Brazilian conditions. Teak plants exhibiting distinctive vascular wilt symptoms were observed in Mirassol do Oeste (MT), Brazil. Trunk samples of the affected trees were collected, disinfected, and plated onto potato dextrose agar. Fungal cultures obtained displayed morphological characteristics typical of the Fusarium oxysporum species complex. A representative F. oxysporum isolate was used in pathogenicity assays. Teak plants displayed symptoms similar to those observed under field conditions approx. 60 d after root-dipping inoculation. Amplicons corresponding to segments of the translation elongation factor 1-α (TEF-1α) and RNA polymerase II second largest subunit (RPB2) genes were obtained using as template the genomic DNA extracted from two Fusarium isolates obtained from teak. Phylogenetic analyses of the amplicon sequences placed the isolates into the same cluster of isolates belonging to the F. oxysporum species complex. To our knowledge, this is the first report of vascular wilt of teak caused by F. oxysporum in the Neotropical region

    The 22-Year Hale Cycle in cosmic ray flux: evidence for direct heliospheric modulation

    Get PDF
    The ability to predict times of greater galactic cosmic ray (GCR) fluxes is important for reducing the hazards caused by these particles to satellite communications, aviation, or astronauts. The 11-year solar-cycle variation in cosmic rays is highly correlated with the strength of the heliospheric magnetic field. Differences in GCR flux during alternate solar cycles yield a 22-year cycle, known as the Hale Cycle, which is thought to be due to different particle drift patterns when the northern solar pole has predominantly positive (denoted as qA>0 cycle) or negative (qA0 cycles than for qA0 and more sharply peaked for qA0 solar cycles, when the difference in GCR flux is most apparent. This suggests that particle drifts may not be the sole mechanism responsible for the Hale Cycle in GCR flux at Earth. However, we also demonstrate that these polarity-dependent heliospheric differences are evident during the space-age but are much less clear in earlier data: using geomagnetic reconstructions, we show that for the period of 1905 - 1965, alternate polarities do not give as significant a difference during the declining phase of the solar cycle. Thus we suggest that the 22-year cycle in cosmic-ray flux is at least partly the result of direct modulation by the heliospheric magnetic field and that this effect may be primarily limited to the grand solar maximum of the space-age
    corecore