23 research outputs found

    Corn Silage: What's New?

    Full text link
    This information was presented at the 2012 Cornell Nutrition Conference for Feed Manufacturers, organized by the Department of Animal Science in the College of Agriculture and Life Sciences at Cornell University. Softcover copies of the entire conference proceedings may be purchased at http://www.ansci.cornell.edu/dm/proceedings_orders.html or by calling (607)255-4285

    Effect of corn silage hybrids differing in starch and neutral detergent fiber digestibility on lactation performance and total-tract nutrient digestibility by dairy cows

    No full text
    Selection for hybrids with greater starch and NDF digestibility may be beneficial for dairy producers. The objective of this study was to determine the effect of feeding a TMR containing a floury-leafy corn silage hybrid (LFY) compared with a brown midrib corn silage hybrid (BMR) for intake, lactation performance, and total-tract nutrient digestibility in dairy cows. Ninetysix multiparous Holstein cows, 105 \ub1 31 d in milk at trial initiation, were stratified by DIM and randomly assigned to 12 pens of 8 cows each. Pens were randomly assigned to 1 of 2 treatments, BMR or LFY, in a completely randomized design; a 2-wk covariate period with cows fed a common diet followed by a 14- wk treatment period with cows fed their assigned treatment diet. Starch digestibilities, in situ, in vitro, and in vivo, were greater for LFY compared with BMR; the opposite was observed for NDF digestibility. Cows fed BMR consumed 1.7 kg/d more dry matter than LFY. Although, actual-, energy-, and solids-corrected milk yields were greater for BMR than LFY, feed conversions (kg of milk or component-corrected milk per kg of DMI) did not differ. Fat-corrected milk and milk fat yield were similar, as milk fat content was greater for cows fed LFY (4.05%) than BMR (3.83%). Cows fed BMR had lower milk urea nitrogen concentration, but greater milk protein and lactose yields compared with LFY. Body weight change and condition score were unaffected by treatment. Total-tract starch digestibility was greater for cows fed the LFY corn silage; however, dry matter intake and milk and protein yields were greater for cows fed the BMR corn silage. Although total-tract starch digestibility was greater for cows fed the LFY corn silage, feed efficiency was not affected by hybrid type due to greater dry matter intake and milk and protein yields by cows fed the BMR corn silage

    Effects of chemical additive and packing density on the fermentation profile and nutrient composition of ensiled cocktail forage mix

    No full text
    Recently, the use of cocktail forage mixes in dairy cattle rations has become more common because the mixtures are low-cost, fit well in rotation after a cereal grain forage, and can have similar yield and energy value compared with alfalfa silage. This experiment evaluated the effects of a chemical additive and packing density on the fermentation profile and nutrient composition of cocktail mix silage. The cocktail forage mix (brown-midrib sorghum-sudangrass, Italian ryegrass, red clover, berseem clover, and hairy vetch) was harvested, ensiled in laboratory silos (3.79-L plastic buckets), and allowed to ferment for 30 d. The experiment consisted of 6 treatments, 2 chemical additives [CON (30 mL of distilled water) or ADD (sodium sulfite, sodium metabisulfite, and fungal amylase)], and 3 packing densities [D100, D75, and D50 (100%, 75%, or 50% of the maximum material in laboratory silos, respectively)], for a total of 24 silos (4 replications per treatment combination). No interactions of additive by density were detected for any parameters evaluated. The addition of the chemical additive influenced fermentation profile, with reduced concentrations of total acids, lactic acid, acetic acid, and ethanol in ADD-treated silages. Moreover, D50 reduced concentrations of total acids, lactic acid, and acetic acid compared with D100, but had greater pH and yeast and mold counts. Minimal changes in nutrient composition were detected regardless of treatment. Overall, this study corroborates the importance of a well-packed silage during the ensiling process. Poorly packed cocktail mix silages may be more prone to spoilage based on yeast and mold counts

    Effect of feeding a reduced-starch diet with or without amylase addition on lactation performance in dairy cows

    No full text
    The objective of this study was to determine lactation performance responses of high-producing dairy cows to a reduced-starch diet compared with a normal-starch diet and to the addition of exogenous amylase to the reduced-starch diet. Thirty-six multiparous Holstein cows (51 +/- 22 DIM and 643 +/- 49 kg of body weight at trial initiation) were randomly assigned to I of 3 treatments in a completely randomized design: a 3-wk covariate adjustment period during which the cows were fed the normal-starch diet, followed by a 12-wk treatment period during which the cows were fed their assigned treatment diets. The normal-starch TMR did not contain exogenous amylase (NS-). The reduced-starch diets, formulated by partially replacing corn grain with soy hulls, were fed without (RS-) and with (RS+) exogenous amylase added to the TMR. Starch and NDF concentrations averaged 27.1 and 30.6%, 21.8 and 36.6%, and 20.7 and 36.6% (dry matter basis) for the NS-, RS-, and RS+ diets, respectively. Dry matter intake for cows fed the RS- diet was 2.4 and 3.2 kg/d greater than for cows fed the NS- and RS+ diets, respectively. Intake of NDF ranged from 1.19 to 1.52% of body weight among the treatments, with the RS- diet being 28% greater than the NS- diet and 13% greater than the RS+ diet. Milk yield averaged 50.4 kg/d and was unaffected by treatment. Fat-corrected milk yield was 2.9 kg/d greater for cows fed the RS- diet than for cows fed the NS- diet. Body weight and body condition score measurements were unaffected by treatment. Fat, solids-, and energy-corrected milk feed conversions (kilograms/kilogram of DMI) were 12 to 13% greater for cows fed the RS+ diet than for cows fed the RS-diet. Dry matter and nutrient digestibilities were lowest for cows fed the NS- diet and greatest for cows fed the RS+ diet, and were greater for cows fed the RS+ diet than for cows fed the RS- diet, with the exception of starch digestibility, which was similar. Greater conversion of feed to milk for dairy cows fed reduced-starch diets that include exogenous amylase may offer potential for improving economic performance

    Physical effectiveness of corn silage fractions stratified with the Penn State Particle Separator for lactating dairy cows

    No full text
    ABSTRACT: This study evaluated the physical effectiveness of whole-plant corn silage (CS) particles stratified with the Penn State Particle Separator, composed of 19- and 8-mm-diameter sieves and a pan, for lactating dairy cows. Eight Holstein cows (27.6 ± 2.8 kg/d of milk, 611 ± 74 kg body weight; 152 ± 83 d in milk) were assigned to two 4 × 4 Latin squares (22-d periods, 16-d adaptation), where one square was formed with rumen-cannulated cows. Three CS particle fractions were manually isolated using the 8- and 19-mm diameter sieves and re-ensiled in 200-L drums. The 4 experimental diets were (% dry matter): (1) CON (control): 17% forage neutral detergent fiber (NDF) from CS (basal roughage), 31.5% starch, and 31.9% NDF; (2) PSPan: 17% forage NDF from CS + 9% NDF from CS particles 19 mm, 24.9% starch, and 38.8% NDF. Cows fed PS8 had greater dry matter intake and energy-corrected milk yield (22.4 and 26.9 kg/d, respectively) than cows fed CON (20.8 and 24.7 kg/d) and PS19 (21.2 and 24.8 kg/d), but no difference was detected between PSPan (21.6 and 25.8 kg/d) and other treatments. Milk fat concentration was greater for PS8 than CON, with intermediate values for PSPan and PS19. Milk fat yield was greater for cows fed PS8 than CON and PS19, and cows fed PSPan secreted more fat than CON cows but were not different from cows fed the other 2 diets. Cows fed CON had a lower meal frequency than cows fed PSPan, shorter meal and rumination times than PS8, and greater meal size and lower rates of rumination and chewing than the other 3 diets. Total chewing per unit of NDF was higher for PS8 than PSPan, although neither treatment differed from CON or PS19. Cows fed PS19 had higher refusal of feed particles >19 mm than cows fed CON and PSPan. The refusal of dietary NDF and undigested NDF in favor of starch were all greater for PS19 than on the other treatments. Cows fed PS19 had a greater proportion of the swallowed bolus and rumen digesta with particles >19 mm than the other 3 diets. Cows fed CON had the lowest ruminal pH and greatest lactate concentration relative to the other 3 diets. Plasma lipopolysaccharide was higher for cows fed CON and PSPan than for cows fed PS8 and PS19, and serum d-lactate tended to be lower on PSPan than for CON and PS8. In summary, the inclusion of CS fractions in a low-forage fiber diet (CON) reduced signs of ruminal acidosis. Compared with CS NDF 19 mm, CS NDF with 8- to 19-mm length promoted better rumen health and performance of dairy cows. These results highlight the importance of adjusting CS harvest and formulating dairy diets based on the proportion of particles retained between the 8- and 19-mm sieves
    corecore