191 research outputs found
Topiramate in children and adolescents with epilepsy and mental retardation: a prospective study on behavior and cognitive effects.
The aim of the present study was to assess the behavioral and cognitive effects following treatment with topiramate in children and
adolescents with epilepsy with mild to profound mental retardation. The study group comprised 29 children, 16 males and 13 females,
aged 3 to 19 years, affected by partial (4) and generalized (25) crypto/symptomatic epilepsy and mental retardation (7 mild, 5 moderate,
15 severe, 2 profound), who were administered topiramate (TPM) as add-on therapy to their baseline antiepileptic treatment. At baseline,
3 months, 6 months, and 12 months, parents or caregivers of each patient were administered a questionnaire based on the Holmfrid
Quality of Life Inventory. After a 3-month follow-up, the add-on topiramate caused overall mild to moderate cognitive/behavioral worsening
in about 70% of children and adolescents with mental retardation and epilepsy. After 6 and 12 months of follow-up, global worsening
persisted in 31 and 20.1% of cases, respectively. In conclusion, this trial confirms that TPM can have significant adverse cognitive
and behavioral side effects, even in mentally disabled children and adolescents.
2007 Elsevier Inc. All rights reserved
Normalization Removes Differences in Contractile Properties and Corticospinal Excitability Between Single- and Multi-Joint Exercises
Click the PDF icon to download the abstract
Impact of Operational Stress on Motor Evoked Potentials in Military Personnel
Click the PDF icon to download the abstract
Colossal dielectric constants in transition-metal oxides
Many transition-metal oxides show very large ("colossal") magnitudes of the
dielectric constant and thus have immense potential for applications in modern
microelectronics and for the development of new capacitance-based
energy-storage devices. In the present work, we thoroughly discuss the
mechanisms that can lead to colossal values of the dielectric constant,
especially emphasising effects generated by external and internal interfaces,
including electronic phase separation. In addition, we provide a detailed
overview and discussion of the dielectric properties of CaCu3Ti4O12 and related
systems, which is today's most investigated material with colossal dielectric
constant. Also a variety of further transition-metal oxides with large
dielectric constants are treated in detail, among them the system La2-xSrxNiO4
where electronic phase separation may play a role in the generation of a
colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in
the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator
Transitions and Ordering of Microscopic Degrees of Freedom
Complexity of multi-dimensional spontaneous EEG decreases during propofol induced general anaesthesia
Emerging neural theories of consciousness suggest a correlation between a specific type of neural dynamical complexity and the level of consciousness: When awake and aware, causal interactions between brain regions are both integrated (all regions are to a certain extent connected) and differentiated (there is inhomogeneity and variety in the interactions). In support of this, recent work by Casali et al (2013) has shown that Lempel-Ziv complexity correlates strongly with conscious level, when computed on the EEG response to transcranial magnetic stimulation. Here we investigated complexity of spontaneous high-density EEG data during propofol-induced general anaesthesia. We consider three distinct measures: (i) Lempel-Ziv complexity, which is derived from how compressible the data are; (ii) amplitude coalition entropy, which measures the variability in the constitution of the set of active channels; and (iii) the novel synchrony coalition entropy (SCE), which measures the variability in the constitution of the set of synchronous channels. After some simulations on Kuramoto oscillator models which demonstrate that these measures capture distinct ‘flavours’ of complexity, we show that there is a robustly measurable decrease in the complexity of spontaneous EEG during general anaesthesia
Electrode Polarization Effects in Broadband Dielectric Spectroscopy
In the present work, we provide broadband dielectric spectra showing strong
electrode polarization effects for various materials, belonging to very
different material classes. This includes both ionic and electronic conductors
as, e.g., salt solutions, ionic liquids, human blood, and
colossal-dielectric-constant materials. These data are intended to provide a
broad data base enabling a critical test of the validity of phenomenological
and microscopic models for electrode polarization. In the present work, the
results are analyzed using a simple phenomenological equivalent-circuit
description, involving a distributed parallel RC circuit element for the
modeling of the weakly conducting regions close to the electrodes. Excellent
fits of the experimental data are achieved in this way, demonstrating the
universal applicability of this approach. In the investigated ionically
conducting materials, we find the universal appearance of a second dispersion
region due to electrode polarization, which is only revealed if measuring down
to sufficiently low frequencies. This indicates the presence of a second
charge-transport process in ionic conductors with blocking electrodes.Comment: 9 pages, 6 figures, experimental data are provided in electronic form
(see "Data Conservancy"
Sleep endophenotypes of schizophrenia: slow waves and sleep spindles in unaffected first-degree relatives
Sleep spindles and slow waves are the main brain oscillations occurring in non-REM sleep. Several lines of evidence suggest that spindles are initiated within the thalamus, whereas slow waves are generated and modulated in the cortex. A decrease in sleep spindle activity has been described in Schizophrenia (SCZ), including chronic, early course, and early onset patients. In contrast, slow waves have been inconsistently found to be reduced in SCZ, possibly due to confounds like duration of illness and antipsychotic medication exposure. Nontheless, the implication of sleep spindles and slow waves in the neurobiology of SCZ and related disorders, including their heritability, remains largely unknown. Unaffected first-degree relatives (FDRs) share a similar genetic background and several neurophysiological and cognitive deficits with SCZ patients, and allow testing whether some of these measures are candidate endophenotypes. In this study, we performed sleep high-density EEG recordings to characterise the spatiotemporal features of sleep spindles and slow waves in FDRs of SCZ probands and healthy subjects (HS) with no family history of SCZ. We found a significant reduction of integrated spindle activity (ISAs) in FDRs relative to HS, whereas spindle density and spindle duration were not different between groups. FDRs also had decreased slow wave amplitude and slopes. Altogether, our results suggest that ISAs deficits might represent a candidate endophenotype for SCZ. Furthermore, given the slow wave deficits observed in FDRs, we propose that disrupted cortical synchronisation increases the risk for SCZ, but thalamic dysfunction is necessary for the disorder to fully develop
TMS-Induced Cortical Potentiation during Wakefulness Locally Increases Slow Wave Activity during Sleep
BACKGROUND: Sleep slow wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA may reflect plastic changes triggered by learning. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis directly, we used transcranial magnetic stimulation (TMS) in conjunction with high-density EEG in humans. We show that 5-Hz TMS applied to motor cortex induces a localized potentiation of TMS-evoked cortical EEG responses. We then show that, in the sleep episode following 5-Hz TMS, SWA increases markedly (+39.1±17.4%, p<0.01, n = 10). Electrode coregistration with magnetic resonance images localized the increase in SWA to the same premotor site as the maximum TMS-induced potentiation during wakefulness. Moreover, the magnitude of potentiation during wakefulness predicts the local increase in SWA during sleep. CONCLUSIONS/SIGNIFICANCE: These results provide direct evidence for a link between plastic changes and the local regulation of sleep need
Daytime Naps, Motor Memory Consolidation and Regionally Specific Sleep Spindles
BACKGROUND: Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationship not simply with global sleep-stage measures, but unique characteristics of sleep spindles at regionally specific locations; mapping to the corresponding memory representation. METHODOLOGY/PRINCIPAL FINDINGS: Two groups of subjects trained on a motor-skill task using their left hand – a paradigm known to result in overnight plastic changes in the contralateral, right motor cortex. Both groups trained in the morning and were tested 8 hr later, with one group obtaining a 60–90 minute intervening midday nap, while the other group remained awake. At testing, subjects that did not nap showed no significant performance improvement, yet those that did nap expressed a highly significant consolidation enhancement. Within the nap group, the amount of offline improvement showed a significant correlation with the global measure of stage-2 NREM sleep. However, topographical sleep spindle analysis revealed more precise correlations. Specifically, when spindle activity at the central electrode of the non-learning hemisphere (left) was subtracted from that in the learning hemisphere (right), representing the homeostatic difference following learning, strong positive relationships with offline memory improvement emerged–correlations that were not evident for either hemisphere alone. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that motor memories are dynamically facilitated across daytime naps, enhancements that are uniquely associated with electrophysiological events expressed at local, anatomically discrete locations of the brain
- …