17,198 research outputs found

    Suppression of superconductivity by Neel-type magnetic fluctuations in the iron pnictides

    Full text link
    Motivated by recent experimental detection of Neel-type ((π,π)(\pi,\pi)) magnetic fluctuations in some iron pnictides, we study the impact of competing (π,π)(\pi,\pi) and (π,0)(\pi,0) spin fluctuations on the superconductivity of these materials. We show that, counter-intuitively, even short-range, weak Neel fluctuations strongly suppress the s+s^{+-} state, with the main effect arising from a repulsive contribution to the s+s^{+-} pairing interaction, complemented by low frequency inelastic scattering. Further increasing the strength of the Neel fluctuations leads to a low-TcT_{c} d-wave state, with a possible intermediate s+ids+id phase. The results suggest that the absence of superconductivity in a series of hole-doped pnictides is due to the combination of short-range Neel fluctuations and pair-breaking impurity scattering, and also that TcT_{c} of optimally doped pnictides could be further increased if residual (π,π)(\pi,\pi) fluctuations were reduced.Comment: revised version accepted for publication in PR

    Quantum Geometry and Quantum Gravity

    Get PDF
    The purpose of this contribution is to give an introduction to quantum geometry and loop quantum gravity for a wide audience of both physicists and mathematicians. From a physical point of view the emphasis will be on conceptual issues concerning the relationship of the formalism with other more traditional approaches inspired in the treatment of the fundamental interactions in the standard model. Mathematically I will pay special attention to functional analytic issues, the construction of the relevant Hilbert spaces and the definition and properties of geometric operators: areas and volumes.Comment: To appear in the AIP Conference Proceedings of the XVI International Fall Workshop on Geometry and Physics, Lisbon - Portugal, 5-8 September 200

    Superlens made of a metamaterial with extreme effective parameters

    Get PDF
    We propose a superlens formed by an ultra-dense array of crossed metallic wires. It is demonstrated that due to the anomalous interaction between crossed wires, the structured substrate is characterized by an anomalously high index of refraction and supports strongly confined guided modes with very short propagation wavelengths. It is theoretically proven that a planar slab of such structured material makes a superlens that may compensate for the attenuation introduced by free-space propagation and restore the subwavelength details of the source. The bandwidth of the proposed device can be quite significant since the response of the structured substrate is non-resonant. The theoretical results are fully supported by numerical simulations.Comment: Accepted for publication in Phys. Rev. B (in press

    Spectroscopic characterization of X-ray emitting young stars associated with the Sh 2-296 nebula

    Full text link
    We studied a sample of stars associated with the Sh 2-296 nebula, part of the reflection nebulae complex in the region of Canis Major (CMa R1). Our sample corresponds to optical counterparts of X-ray sources detected from observations with the XMM-Newton satellite, which revealed dozens of possible low-mass young stars not yet known in this region. A sample of 58 young star candidates were selected based on optical spectral features, mainly H{\alpha} and lithium lines, observed with multi-objects spectroscopy performed by the Gemini South telescope. Among the candidates, we find 41 confirmed T Tauri and 15 very likely young stars. Based on the H{\alpha} emission, the T Tauri stars were distinguished between classical (17%) and weak-lined (83%), but no significant difference was found in the age and mass distribution of these two classes. The characterization of the sample was complemented by near- and mid-infrared data, providing an estimate of ages and masses from the comparison with pre-main-sequence evolutionary models. While half of the young stars have an age of 1-2 Myrs or less, only a small fraction (~25%) shows evidence of IR excess revealing the presence of circumstellar discs. This low fraction is quite rare compared to most young star-forming regions, suggesting that some external factor has accelerated the disc dissipation

    Fate of the Bose insulator in the limit of strong localization and low Cooper-pair density in ultrathin films

    Get PDF
    A Bose insulator composed of a low density of strongly localized Cooper pairs develops at the two-dimensional superconductor to insulator transition (SIT) in a number of thin film systems. Investigations of ultrathin amorphous PbBi films far from the SIT described here provide evidence that the Bose insulator gives way to a second insulating phase with decreasing film thickness. At a critical film thickness dc the magnetoresistance changes sign from positive, as expected for boson transport, to negative, as expected for fermion transport, signs of local Cooper-pair phase coherence effects on transport vanish, and the transport activation energy exhibits a kink. Below dc pairing fluctuation effects remain visible in the high-temperature transport while the activation energy continues to rise. These features show that Cooper pairing persists and suggest that the localized unpaired electron states involved in transport are interspersed among regions of strongly localized Cooper pairs in this strongly localized, low Cooper-pair density phase

    Collapse of the Cooper pair phase coherence length at a superconductor to insulator transition

    Get PDF
    We present investigations of the superconductor to insulator transition (SIT) of uniform a-Bi films using a technique sensitive to Cooper pair phase coherence. The films are perforated with a nanohoneycomb array of holes to form a multiply connected geometry and subjected to a perpendicular magnetic field. Film magnetoresistances on the superconducting side of the SIT oscillate with a period dictated by the superconducting flux quantum and the areal hole density. The oscillations disappear close to the SIT critical point to leave a monotonically rising magnetoresistance that persists in the insulating phase. These observations indicate that the Cooper pair phase coherence length, which is infinite in the superconducting phase, collapses to a value less than the interhole spacing at this SIT. This behavior is inconsistent with the gradual reduction of the phase coherence length expected for a bosonic, phase fluctuation driven SIT. This result starkly contrasts with previous observations of oscillations persisting in the insulating phase of other films implying that there must be at least two distinct classes of disorder tuned SITs

    Technology adoption and the investment climate : firm-level evidence for Eastern Europe and Central Asia

    Get PDF
    The international diffusion of technology presents an opportunity for developing economies distant from the world technological frontier to reduce their income gap relative to advanced economies. It is therefore crucial to understand why, when faced with similar technological alternatives different firms in different countries choose to adopt different vintages of capital. This paper examines technology adoption across firms in Eastern Europe and Central Asia. The findings show that access to complementary inputs - managerial capacity, skilled labor, finance, and good infrastructure - and to international knowledge - through foreign direct investment or exports - is an important correlate of technology adoption. The link between market incentives and technology adoption is more nuanced. Although consumer pressure results in technology adoption, competitor pressure does not, suggesting that only firms with rents are able to adopt technology given substantial resource constraints. Privatized firms exhibit better technology adoption outcomes but only when a clear private owner with a profit incentive is present. Better governance is associated with technology adoption only in the countries that joined the European Union in 2004. Future increases in technology adoption by firms in the region will require complementary reforms of the investment climate.E-Business,Technology Industry,ICT Policy and Strategies,Microfinance,

    Divergent nematic susceptibility in an iron arsenide superconductor

    Full text link
    Within the Landau paradigm of continuous phase transitions, ordered states of matter are characterized by a broken symmetry. Although the broken symmetry is usually evident, determining the driving force behind the phase transition is often a more subtle matter due to coupling between otherwise distinct order parameters. In this paper we show how measurement of the divergent nematic susceptibility of an iron pnictide superconductor unambiguously distinguishes an electronic nematic phase transition from a simple ferroelastic distortion. These measurements also reveal an electronic nematic quantum phase transition at the composition with optimal superconducting transition temperature.Comment: 8 pages, 8 figure
    corecore