7 research outputs found

    A high resolution genetic map of mouse Chromosome 15 encompassing the Dominant megacolon (Dom) locus.

    No full text

    Decreased expression of Intestinal I- and L-FABP levels in rare human genetic lipid malabsorption syndromes.

    No full text
    We investigated, for the first time, the expression of I- and L-FABP in two very rare hereditary lipid malabsorption syndromes as compared with normal subjects. Abetalipoproteinemia (ABL) and Anderson's disease (AD) are characterized by an inability to export alimentary lipids as chylomicrons that result in fat loading of enterocytes. Duodeno-jejunal biopsies were obtained from 14 fasted normal subjects, and from four patients with ABL and from six with AD. Intestinal FABP expression was investigated by immuno-histochemistry, western blot, ELISA and Northern blot analysis. In contrast to normal subjects, the cellular immunostaining for both FABPs was clearly decreased in patients, as the enterocytes became fat-laden. In patients with ABL, the intestinal contents of I- (60.7 +/- 13.38 ng/mg protein) and L-FABP (750.3 +/- 121.3 ng/mg protein) are significantly reduced (50 and 35%, P < 0.05, respectively) as compared to normal subjects (I-135.3 +/- 11.1 ng, L-1211 +/- 110 ng/mg protein). In AD, the patients also exhibited decreased expression (50%, P < 0.05; I-59 +/- 11.88 ng, L-618.2 +/- 104.6 ng/mg protein). Decreased FABP expression was not associated with decreased mRNA levels. The results suggest that enterocytes might regulate intracellular FABP content in response to intracellular fatty acids, which we speculate may act as lipid sensors to prevent their intracellular transport

    Postprandial lipid absorption in seven heterozygous carriers of deleterious variants of MTTP in two abetalipoproteinemic families

    No full text
    International audienceBACKGROUND: Abetalipoproteinemia, a recessive disease resulting from deleterious variants in MTTP (microsomal triglyceride transfer protein), is characterized by undetectable concentrations of apolipoprotein B, extremely low levels of low-density lipoprotein cholesterol in the plasma, and a total inability to export apolipoprotein B-containing lipoproteins from both the intestine and the liver. OBJECTIVE: To study lipid absorption after a fat load and liver function in 7 heterozygous relatives from 2 abetalipoproteinemic families, 1 previously unreported. RESULTS: Both patients are compound heterozygotes for p.(Arg540His) and either c.708\₇09del p.(His236Glnfs*11) or c.1344+3\₁344+6del on the MTTP gene. The previously undescribed patient has been followed for 22 years with ultrastructure analyses of both the intestine and the liver. In these 2 families, 5 relatives were heterozygous for p.(Arg540His), 1 for p.(His236Glnfs*11) and 1 for c.1344+3\₁344+6del. In 4 heterozygous relatives, the lipid absorption was normal independent of the MTTP variant. In contrast, in 3 of them, the increase in triglyceride levels after fat load was abnormal. These subjects were additionally heterozygous carriers of Asp2213 APOB in-frame deletion, near the cytidine mRNA editing site, which is essential for intestinal apoB48 production. Liver function appeared to be normal in all the heterozygotes except for one who exhibited liver steatosis for unexplained reasons. CONCLUSION: Our study suggests that a single copy of the MTTP gene may be sufficient for human normal lipid absorption, except when associated with an additional APOB gene alteration. The hepatic steatosis reported in 1 patient emphasizes the need for liver function tests in all heterozygotes until the level of risk is established
    corecore