994 research outputs found

    Outcomes and costs of penetrating trauma injury in England and Wales

    Get PDF
    The official published version of the article can be found at the link below.Background: Penetrating trauma injury is generally associated with higher short-term mortality than blunt trauma, and results in substantial societal costs given the young age of those typically injured. Little information exists on the patient and treatment characteristics for penetrating trauma in England and Wales, and the acute outcomes and costs of care have not been documented and analysed in detail.Methods: Using the Trauma Audit Research Network (TARN) database, we examined patient records for persons aged 18+ years hospitalised for penetrating trauma injury between January 2000 and December 2005. Patients were stratified by injury severity score (ISS).Results: 1365 patients were identified; 16% with ISS 1-8, 50% ISS 9-15, 15% ISS 16-24, 16% ISS 25-34, and 4% with ISS 35-75. The median age was 30 years and 91% of patients were men. Over 90% of the injuries occurred in alleged assaults. Stabbings were the most common cause of injury (73%), followed by shootings (19%). Forty-seven percent were admitted to critical care for a median length of stay of 2 days; median total hospital length of stay was 7 days. Sixty-nine percent of patients underwent at least one surgical procedure. Eight percent of the patients died before discharge, with a mean time to death of 1.6 days (S.D. 4.0). Mortality ranged from 0% among patients with ISS 1-8 to 55% in patients with ISS > 34. The mean hospital cost per patient was 7983 pound, ranging from 6035 pound in patients with ISS 9-15 to El 6,438 among patients with ISS > 34. Costs varied significantly by ISS, hospital mortality, cause and body region of injury.Conclusion: The acute treatment costs of penetrating trauma injury in England and Wales vary by patient, injury and treatment characteristics. Measures designed toreduce the incidence and severity of penetrating trauma may result in significant hospital cost savings. (C) 2008 Elsevier Ltd. All rights reserved.This study was funded by Novo Nordisk A/S

    Modelling energy spot prices by volatility modulated Levy-driven Volterra processes

    Get PDF
    This paper introduces the class of volatility modulated L\'{e}vy-driven Volterra (VMLV) processes and their important subclass of L\'{e}vy semistationary (LSS) processes as a new framework for modelling energy spot prices. The main modelling idea consists of four principles: First, deseasonalised spot prices can be modelled directly in stationarity. Second, stochastic volatility is regarded as a key factor for modelling energy spot prices. Third, the model allows for the possibility of jumps and extreme spikes and, lastly, it features great flexibility in terms of modelling the autocorrelation structure and the Samuelson effect. We provide a detailed analysis of the probabilistic properties of VMLV processes and show how they can capture many stylised facts of energy markets. Further, we derive forward prices based on our new spot price models and discuss option pricing. An empirical example based on electricity spot prices from the European Energy Exchange confirms the practical relevance of our new modelling framework.Comment: Published in at http://dx.doi.org/10.3150/12-BEJ476 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Cumulate causes for the low contents of sulfide-loving elements in the continental crust

    Get PDF
    Despite the economic importance of chalcophile (sulfide-loving) and siderophile (metal-loving) elements (CSEs), it is unclear how they become enriched or depleted in the continental crust, compared with the oceanic crust. This is due in part to our limited understanding of the partitioning behaviour of the CSEs. Here I compile compositional data for mid-ocean ridge basalts and subduction-related volcanic rocks. I show that the mantle-derived melts that contribute to oceanic and continental crust formation rarely avoid sulfide saturation during cooling in the crust and, on average, subduction-zone magmas fractionate sulfide at the base of the continental crust prior to ascent. Differentiation of mantle-derived melts enriches lower crustal sulfide- and silicate-bearing cumulates in some CSEs compared with the upper crust. This storage predisposes the cumulate-hosted compatible CSEs (such as Cu and Au) to be recycled back into the mantle during subduction and delamination, resulting in their low contents in the bulk continental crust and potentially contributing to the scarcity of ore deposits in the upper continental crust. By contrast, differentiation causes the upper oceanic and continental crust to become enriched in incompatible CSEs (such as W) compared with the lower oceanic and continental crust. Consequently, incompatible CSEs are predisposed to become enriched in subduction-zone magmas that contribute to continental crust formation and are less susceptible to removal from the continental crust via delamination compared with the compatible CSEs

    Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology

    Get PDF
    Mutations in the charged multivesicular body protein 2B (CHMP2B) cause frontotemporal dementia (FTD). We report that mice which express FTD-causative mutant CHMP2B at physiological levels develop a novel lysosomal storage pathology characterised by large neuronal autofluorescent aggregates. The aggregates are an early and progressive pathology that occur at 3 months of age and increase in both size and number over time. These autofluorescent aggregates are not observed in mice expressing wild-type CHMP2B, or in non-transgenic controls, indicating that they are a specific pathology caused by mutant CHMP2B. Ultrastructural analysis and immuno- gold labelling confirmed that they are derived from the endolysosomal system. Consistent with these findings, CHMP2B mutation patient brains contain morphologically similar autofluorescent aggregates. These aggregates occur significantly more frequently in human CHMP2B mutation brain than in neurodegenerative disease or age-matched control brains. These data suggest that lysosomal storage pathology is the major neuronal pathology in FTD caused by CHMP2B mutation. Recent evidence suggests that two other genes associated with FTD, GRN and TMEM106B are important for lysosomal function. Our identification of lysosomal storage pathology in FTD caused by CHMP2B mutation now provides evidence that endolysosomal dysfunction is a major degenerative pathway in FTD

    Body Segment Differences in Surface Area, Skin Temperature and 3D Displacement and the Estimation of Heat Balance during Locomotion in Hominins

    Get PDF
    The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached

    The Regge Limit for Green Functions in Conformal Field Theory

    Full text link
    We define a Regge limit for off-shell Green functions in quantum field theory, and study it in the particular case of conformal field theories (CFT). Our limit differs from that defined in arXiv:0801.3002, the latter being only a particular corner of the Regge regime. By studying the limit for free CFTs, we are able to reproduce the Low-Nussinov, BFKL approach to the pomeron at weak coupling. The dominance of Feynman graphs where only two high momentum lines are exchanged in the t-channel, follows simply from the free field analysis. We can then define the BFKL kernel in terms of the two point function of a simple light-like bilocal operator. We also include a brief discussion of the gravity dual predictions for the Regge limit at strong coupling.Comment: 23 pages 2 figures, v2: Clarification of relation of the Regge limit defined here and previous work in CFT. Clarification of causal orderings in the limit. References adde

    Anyonic interferometry and protected memories in atomic spin lattices

    Full text link
    Strongly correlated quantum systems can exhibit exotic behavior called topological order which is characterized by non-local correlations that depend on the system topology. Such systems can exhibit remarkable phenomena such as quasi-particles with anyonic statistics and have been proposed as candidates for naturally fault-tolerant quantum computation. Despite these remarkable properties, anyons have never been observed in nature directly. Here we describe how to unambiguously detect and characterize such states in recently proposed spin lattice realizations using ultra-cold atoms or molecules trapped in an optical lattice. We propose an experimentally feasible technique to access non-local degrees of freedom by performing global operations on trapped spins mediated by an optical cavity mode. We show how to reliably read and write topologically protected quantum memory using an atomic or photonic qubit. Furthermore, our technique can be used to probe statistics and dynamics of anyonic excitations.Comment: 14 pages, 6 figure

    Pre-cooling for endurance exercise performance in the heat: a systematic review.

    Get PDF
    PMCID: PMC3568721The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1741-7015/10/166. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Endurance exercise capacity diminishes under hot environmental conditions. Time to exhaustion can be increased by lowering body temperature prior to exercise (pre-cooling). This systematic literature review synthesizes the current findings of the effects of pre-cooling on endurance exercise performance, providing guidance for clinical practice and further research
    corecore