3,735 research outputs found
Modeling Evolutionary Dynamics of Lurking in Social Networks
Lurking is a complex user-behavioral phenomenon that occurs in all
large-scale online communities and social networks. It generally refers to the
behavior characterizing users that benefit from the information produced by
others in the community without actively contributing back to the production of
social content. The amount and evolution of lurkers may strongly affect an
online social environment, therefore understanding the lurking dynamics and
identifying strategies to curb this trend are relevant problems. In this
regard, we introduce the Lurker Game, i.e., a model for analyzing the
transitions from a lurking to a non-lurking (i.e., active) user role, and vice
versa, in terms of evolutionary game theory. We evaluate the proposed Lurker
Game by arranging agents on complex networks and analyzing the system
evolution, seeking relations between the network topology and the final
equilibrium of the game. Results suggest that the Lurker Game is suitable to
model the lurking dynamics, showing how the adoption of rewarding mechanisms
combined with the modeling of hypothetical heterogeneity of users' interests
may lead users in an online community towards a cooperative behavior.Comment: 13 pages, 5 figures. Accepted at CompleNet 201
Detectable anthropogenic influence on changes in summer precipitation in China
This is the final version. Available from the American Meteorological Society via the DOI in this recordIn China, summer precipitation contributes a major part of the total precipitation amount in a year and has major impacts on society and human life. Whether any changes in summer precipitation are affected by external forcing on the climate system is an important issue. In this study, an optimal fingerprinting method was used to compare the observed changes of total, heavy, moderate, and light precipitation in summer derived from newly homogenized observation data with the simulations from multiple climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). The results demonstrate that the anthropogenic forcing signal can be detected and separated from the natural forcing signal in the observed increase of seasonal accumulated precipitation amount for heavy precipitation in summer in China and eastern China (EC). The simulated changes in heavy precipitation are generally consistent with observed change in China but are underestimated in EC. When the changes in precipitation of different intensities are considered simultaneously, the human influence on simultaneous changes in moderate and light precipitation can be detected in China and EC in summer. Changes attributable to anthropogenic forcing explain most of the observed regional changes for all categories of summer precipitation, and natural forcing contributes little. In the future, with increasing anthropogenic influence, the attribution-constrained projection suggests that heavy precipitation in summer will increasemore than that from the model raw outputs. Society may therefore face a higher risk of heavy precipitation in the future.National Key R&D Program of ChinaNational Natural Science Foundation of ChinaUKâChina Research & Innovation Partnership Fund, Newton FundMet Office Hadley Centre Climate Programm
A modified surgical technique in the management of eyelid burns: a case series
<p>Abstract</p> <p>Introduction</p> <p>Contractures, ectropion and scarring, the most common sequelae of skin grafts after eyelid burn injuries, can result in corneal exposure, corneal ulceration and even blindness. Split-thickness or full-thickness skin grafts are commonly used for the treatment of acute eyelid burns. Plasma exudation and infection are common early complications of eyelid burns, which decrease the success rate of grafts.</p> <p>Case presentation</p> <p>We present the cases of eight patients, two Chinese women and six Chinese men. The first Chinese woman was 36 years old, with 70% body surface area second or third degree flame burn injuries involving her eyelids on both sides. The other Chinese woman was 28 years old, with sulfuric acid burns on her face and third degree burn on her eyelids. The six Chinese men were aged 21, 31, 38, 42, 44, and 55 years, respectively. The 38-year-old patient was transferred from the ER with 80% body surface area second or third degree flame burn injuries and third degree burn injuries to his eyelids. The other five men were all patients with flame burn injuries, with 7% to 10% body surface area third degree burns and eyelids involved. All patients were treated with a modified surgical procedure consisting of separation and loosening of the musculus orbicularis oculi between tarsal plate and septum orbital, followed by grafting a large full-thickness skin graft in three days after burn injury. The use of our modified surgical procedure resulted in 100% successful eyelid grafting on first attempt, and all our patients were in good condition at six-month follow-up.</p> <p>Conclusions</p> <p>This new surgical technique is highly successful in treating eyelid burn injuries, especially flame burn injuries of the eyelid.</p
The speciation and genotyping of Cronobacter isolates from hospitalised patients
The World Health Organization (WHO) has recognised all Cronobacter species as human pathogens. Among premature neonates and immunocompromised infants, these infections can be life-threatening, with clinical presentations of septicaemia, meningitis and necrotising enterocolitis. The neurological sequelae can be permanent and the mortality rate as high as 40 â 80 %. Despite the highlighted issues of neonatal infections, the majority of Cronobacter infections are in the elderly population suffering from serious underlying disease or malignancy and include wound and urinary tract infections, osteomyelitis, bacteraemia and septicaemia. However, no age profiling studies have speciated or genotyped the Cronobacter isolates. A clinical collection of 51 Cronobacter strains from two hospitals were speciated and genotyped using 7-loci multilocus sequence typing (MLST), rpoB gene sequence analysis, O-antigen typing and pulsed- field gel electrophoresis (PFGE). The isolates were predominated by C. sakazakii sequence type 4 (63 %, 32/51) and C. malonaticus sequence type 7 (33 %, 17/51). These had been isolated from throat and sputum samples of all age groups, as well as recal and faecal swabs. There was no apparent relatedness between the age of the patient and the Cronobacter species isolated. Despite the high clonality of Cronobacter , PFGE profiles differentiated strains across the sequence types into 15 pulsotypes. There was almost complete agreement between O-antigen typing and rpoB gene sequence analysis and MLST profiling. This study shows the value of applying MLST to bacterial population studies with strains from two patient cohorts, combined with PFGE for further discrimination of strains
Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating
The grand vision of manufacturing large-area emissive devices with low-cost roll-to-roll coating methods, akin to how newspapers are produced, appeared with the emergence of the organic light-emitting diode about 20 years ago. Today, small organic light-emitting diode displays are commercially available in smartphones, but the promise of a continuous ambient fabrication has unfortunately not materialized yet, as organic light-emitting diodes invariably depend on the use of one or more time- and energy-consuming process steps under vacuum. Here we report an all-solution-based fabrication of an alternative emissive device, a light-emitting electrochemical cell, using a slot-die roll-coating apparatus. The fabricated flexible sheets exhibit bidirectional and uniform light emission, and feature a fault-tolerant >1-Îźm-thick active material that is doped in situ during operation. It is notable that the initial preparation of inks, the subsequent coating of the constituent layers and the final device operation all could be executed under ambient air
Accretions of Various Types of Dark Energies onto Morris-Thorne Wormhole
In this work, we have studied accretion of the dark energies onto
Morris-Thorne wormhole. For quintessence like dark energy, the mass of the
wormhole decreases and phantom like dark energy, the mass of wormhole
increases. We have assumed two types of dark energy like variable modified
Chaplygin gas (VMCG) and generalized cosmic Chaplygin gas (GCCG). We have found
the expression of wormhole mass in both cases. We have found the mass of the
wormhole at late universe and this is finite. For our choices the parameters
and the function , these models generate only quintessence dark energy
(not phantom) and so wormhole mass decreases during evolution of the universe.
Next we have assumed 5 kinds of parametrizations of well known dark energy
models. These models generate both quintessence and phantom scenarios. So if
these dark energies accrete onto the wormhole, then for quintessence stage,
wormhole mass decreases upto a certain value (finite value) and then again
increases to infinite value for phantom stage during whole evolution of the
universe. We also shown these results graphically.Comment: 9 pages, 7 figures. arXiv admin note: text overlap with
arXiv:1112.615
Electronic Origin of High Temperature Superconductivity in Single-Layer FeSe Superconductor
The latest discovery of high temperature superconductivity signature in
single-layer FeSe is significant because it is possible to break the
superconducting critical temperature ceiling (maximum Tc~55 K) that has been
stagnant since the discovery of Fe-based superconductivity in 2008. It also
blows the superconductivity community by surprise because such a high Tc is
unexpected in FeSe system with the bulk FeSe exhibiting a Tc at only 8 K at
ambient pressure which can be enhanced to 38 K under high pressure. The Tc is
still unusually high even considering the newly-discovered intercalated FeSe
system A_xFe_{2-y}Se_2 (A=K, Cs, Rb and Tl) with a Tc at 32 K at ambient
pressure and possible Tc near 48 K under high pressure. Particularly
interesting is that such a high temperature superconductivity occurs in a
single-layer FeSe system that is considered as a key building block of the
Fe-based superconductors. Understanding the origin of high temperature
superconductivity in such a strictly two-dimensional FeSe system is crucial to
understanding the superconductivity mechanism in Fe-based superconductors in
particular, and providing key insights on how to achieve high temperature
superconductivity in general. Here we report distinct electronic structure
associated with the single-layer FeSe superconductor. Its Fermi surface
topology is different from other Fe-based superconductors; it consists only of
electron pockets near the zone corner without indication of any Fermi surface
around the zone center. Our observation of large and nearly isotropic
superconducting gap in this strictly two-dimensional system rules out existence
of node in the superconducting gap. These results have provided an unambiguous
case that such a unique electronic structure is favorable for realizing high
temperature superconductivity
Some inequalities on generalized entropies
We give several inequalities on generalized entropies involving Tsallis
entropies, using some inequalities obtained by improvements of Young's
inequality. We also give a generalized Han's inequality.Comment: 15 page
Graphene Photonics and Optoelectronics
The richness of optical and electronic properties of graphene attracts
enormous interest. Graphene has high mobility and optical transparency, in
addition to flexibility, robustness and environmental stability. So far, the
main focus has been on fundamental physics and electronic devices. However, we
believe its true potential to be in photonics and optoelectronics, where the
combination of its unique optical and electronic properties can be fully
exploited, even in the absence of a bandgap, and the linear dispersion of the
Dirac electrons enables ultra-wide-band tunability. The rise of graphene in
photonics and optoelectronics is shown by several recent results, ranging from
solar cells and light emitting devices, to touch screens, photodetectors and
ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres
- âŚ