76 research outputs found

    Open tension free repair of inguinal hernias; the Lichtenstein technique

    Get PDF
    BACKGROUND: Recurrences have been a significant problem following hernia repair. Prosthetic materials have been increasingly used in hernia repair to prevent recurrences. Their use has been associated with several advantages, such as less postoperative pain, rapid recovery, low recurrence rates. METHODS: In this retrospective study, 540 tension-free inguinal hernia repairs were performed between August 1994 and December 1999 in 510 patients, using a polypropylene mesh (Lichtenstein technique). The main outcome measure was early and late morbidity and especially recurrence. RESULTS: Inguinal hernia was indirect in 55 % of cases (297 patients), direct in 30 % (162 patients) and of the pantaloon (mixed) type in 15 % (81 patients). Mean patient age was 53.7 years (range, 18 – 85). Follow-up was completed in 407 patients (80 %) by clinical examination or phone call. The median follow-up period was 3.8 years (range, 1 – 6 years). Seroma and hematoma formation requiring drainage was observed in 6 and 2 patients, respectively, while transient testicular swelling occurred in 5 patients. We have not observed acute infection or abscess formation related to the presence of the foreign body (mesh). In two patients, however, a delayed rejection of the mesh occurred 10 months and 4 years following surgery. There was one recurrence of the hernia (in one of these patients with late mesh rejection) (recurrence rate = 0.2 %). Postoperative neuralgia was observed in 5 patients (1 %). CONCLUSION: Lichtenstein tension-free mesh inguinal hernia repair is a simple, safe, comfortable, effective method, with extremely low early and late morbidity and remarkably low recurrence rate and therefore it is our preferred method for hernia repair since 1994

    Role of Mesenchymal Stem Cells on Cornea Wound Healing Induced by Acute Alkali Burn

    Get PDF
    The aim of this study was to investigate the effects of subconjunctivally administered mesenchymal stem cells (MSCs) on corneal wound healing in the acute stage of an alkali burn. A corneal alkali burn model was generated by placing a piece of 3-mm diameter filter paper soaked in NaOH on the right eye of 48 Sprague-Dawley female rats. 24 rats were administered a subconjunctival injection of a suspension of 2×106 MSCs in 0.1 ml phosphate-buffered saline (PBS) on day 0 and day 3 after the corneal alkali burn. The other 24 rats were administered a subconjunctival injection of an equal amount of PBS as a control. Deficiencies of the corneal epithelium and the area of corneal neovascularization (CNV) were evaluated on days 3 and 7 after the corneal alkali burn. Infiltrated CD68+ cells were detected by immunofluorescence staining. The mRNA expression levels of macrophage inflammatory protein-1 alpha (MIP-1α), tumor necrosis factor-alpha (TNF-α), monocyte chemotactic protein-1 (MCP-1) and vascular endothelial growth factor (VEGF) were analyzed using real-time polymerase chain reaction (real-time PCR). In addition, VEGF protein levels were analyzed using an enzyme-linked immunosorbent assay (ELISA). MSCs significantly enhanced the recovery of the corneal epithelium and decreased the CNV area compared with the control group. On day 7, the quantity of infiltrated CD68+ cells was significantly lower in the MSC group and the mRNA levels of MIP-1α, TNF-α, and VEGF and the protein levels of VEGF were also down-regulated. However, the expression of MCP-1 was not different between the two groups. Our results suggest that subconjunctival injection of MSCs significantly accelerates corneal wound healing, attenuates inflammation and reduces CNV in alkaline-burned corneas; these effects were found to be related to a reduction of infiltrated CD68+ cells and the down-regulation of MIP-1α, TNF-α and VEGF

    Attenuated Inflammatory Response in Aged Mice Brains following Stroke

    Get PDF
    Background: Increased age is a major risk factor for stroke incidence, post-ischemic mortality, and severe and long-term disability. Stroke outcome is considerably influenced by post-ischemic mechanisms. We hypothesized that the inflammatory response following an ischemic injury is altered in aged organisms. Methods and Results: To that end, we analyzed the expression pattern of pro-inflammatory cytokines (TNF, IL-1a, IL-1b, IL-6), anti-inflammatory cytokines (IL-10, TGFb1), and chemokines (Mip-1a, MCP-1, RANTES) of adult (2 months) and aged (24 months) mice brains at different reperfusion times (6 h, 12 h, 24 h, 2 d, 7 d) following transient occlusion of the middle cerebral artery. The infarct size was assessed to monitor possible consequences of an altered inflammatory response in aged mice. Our data revealed an increased neuro-inflammation with age. Above all, we found profound age-related alterations in the reaction to stroke. The response of pro-inflammatory cytokines (TNF, and IL-1b) and the level of chemokines (Mip-1a, and MCP-1) were strongly diminished in the aged post-ischemic brain tissue. IL-6 showed the strongest age-dependent decrease in its post-ischemic expression profile. Anti-inflammatory cytokines (TGFb1, and IL-10) revealed no significant age dependency after ischemia. Aged mice brains tend to develop smaller infarcts. Conclusion: The attenuated inflammatory response to stroke in aged animals may contribute to their smaller infarcts. The results presented here highlight the importance of using aged animals to investigate age-associated diseases like stroke

    Human Bone Marrow-Derived Stem Cells Acquire Epithelial Characteristics through Fusion with Gastrointestinal Epithelial Cells

    Get PDF
    Bone marrow-derived mesenchymal stem cells (MSC) have the ability to differentiate into a variety of cell types and are a potential source for epithelial tissue repair. Several studies have demonstrated their ability to repopulate the gastrointestinal tract (GIT) in bone marrow transplanted patients or in animal models of gastrointestinal carcinogenesis where they were the source of epithelial cancers. However, mechanism of MSC epithelial differentiation still remains unclear and controversial with trans-differentiation or fusion events being evoked. This study aimed to investigate the ability of MSC to acquire epithelial characteristics in the particular context of the gastrointestinal epithelium and to evaluate the role of cell fusion in this process. In vitro coculture experiments were performed with three gastrointestinal epithelial cell lines and MSC originating from two patients. After an 8 day coculture, MSC expressed epithelial markers. Use of a semi-permeable insert did not reproduce this effect, suggesting importance of cell contacts. Tagged cells coculture or FISH on gender-mismatched cells revealed clearly that epithelial differentiation resulted from cellular fusion events, while expression of mesenchymal markers on fused cells decreased over time. In vivo cell xenograft in immunodeficient mice confirmed fusion of MSC with gastrointestinal epithelial cells and self-renewal abilities of these fused cells. In conclusion, our results indicate that fusion could be the predominant mechanism by which human MSC may acquire epithelial characteristics when in close contact with epithelial cells from gastrointestinal origin . These results could contribute to a better understanding of the cellular and molecular mechanisms allowing MSC engraftment into the GIT epithelium

    Cell Therapy of Congenital Corneal Diseases with Umbilical Mesenchymal Stem Cells: Lumican Null Mice

    Get PDF
    BACKGROUND: Keratoplasty is the most effective treatment for corneal blindness, but suboptimal medical conditions and lack of qualified medical personnel and donated cornea often prevent the performance of corneal transplantation in developing countries. Our study aims to develop alternative treatment regimens for congenital corneal diseases of genetic mutation. METHODOLOGY/PRINCIPAL FINDINGS: Human mesenchymal stem cells isolated from neonatal umbilical cords were transplanted to treat thin and cloudy corneas of lumican null mice. Transplantation of umbilical mesenchymal stem cells significantly improved corneal transparency and increased stromal thickness of lumican null mice, but human umbilical hematopoietic stem cells failed to do the same. Further studies revealed that collagen lamellae were re-organized in corneal stroma of lumican null mice after mesenchymal stem cell transplantation. Transplanted umbilical mesenchymal stem cells survived in the mouse corneal stroma for more than 3 months with little or no graft rejection. In addition, these cells assumed a keratocyte phenotype, e.g., dendritic morphology, quiescence, expression of keratocyte unique keratan sulfated keratocan and lumican, and CD34. Moreover, umbilical mesenchymal stem cell transplantation improved host keratocyte functions, which was verified by enhanced expression of keratocan and aldehyde dehydrogenase class 3A1 in lumican null mice. CONCLUSIONS/SIGNIFICANCE: Umbilical mesenchymal stem cell transplantation is a promising treatment for congenital corneal diseases involving keratocyte dysfunction. Unlike donated corneas, umbilical mesenchymal stem cells are easily isolated, expanded, stored, and can be quickly recovered from liquid nitrogen when a patient is in urgent need

    Therapeutic potential of transplanted placental mesenchymal stem cells in treating Chinese miniature pigs with acute liver failure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stem cell-based therapy to treat liver diseases is a focus of current research worldwide. So far, most such studies depend on rodent hepatic failure models. The purpose of this study was to isolate mesenchymal stem cells from human placenta (hPMSCs) and determine their therapeutic potential for treating Chinese experimental miniature pigs with acute liver failure (ALF).</p> <p>Methods</p> <p>hPMSCs were isolated and analyzed for their purity and differentiation potential before being employed as the donor cells for transplantation. ALF models of Chinese experimental miniature pigs were established and divided into four groups: no cell transplantation; hPMSCs transplantation via the jugular vein; X-ray-treated hPMSCs transplantation via the portal vein; and hPMSCs transplantation via the portal vein. The restoration of biological functions of the livers receiving transplantation was assessed via a variety of approaches such as mortality rate determination, serum biochemical analysis, and histological, immunohistochemical, and genetic analysis.</p> <p>Results</p> <p>hPMSCs expressed high levels of CD29, CD73, CD13, and CD90, had adipogenic, osteogenic, and hepatic differentiation potential. They improved liver functions <it>in vivo </it>after transplantation into the D-galactosamine-injured pig livers as evidenced by the fact that ALT, AST, ALP, CHE, TBIL, and TBA concentrations returned to normal levels in recipient ALF pigs. Meanwhile, histological data revealed that transplantation of hPMSCs via the portal vein reduced liver inflammation, decreased hepatic denaturation and necrosis, and promoted liver regeneration. These ameliorations were not found in the other three groups. The result of 7-day survival rates suggested that hPMSCs transplantation via the portal vein was able to significantly prolong the survival of ALF pigs compared with the other three groups. Histochemistry and RT-PCR results confirmed the presence of transplanted human cells in recipient pig livers (Groups III, IV).</p> <p>Conclusions</p> <p>Our data revealed that hPMSCs could not only differentiate into hepatocyte-like cells <it>in vitro </it>and <it>in vivo</it>, but could also prolong the survival time of ALF pigs. Regarding the transplantation pathways, the left branch of the portal vein inside the liver was superior to the jugular vein pathway. Thus, hPMSCs transplantation through the portal vein by B-ultrasonography may represent a superior approach for treating liver diseases.</p

    Induction of transforming growth factor beta receptors following focal ischemia in the rat brain

    Get PDF
    Transforming growth factor-ÎČs (TGF-ÎČs) regulate cellular proliferation, differentiation, and survival. TGF-ÎČs bind to type I (TGF-ÎČRI) and II receptors (TGF-ÎČRII), which are transmembrane kinase receptors, and an accessory type III receptor (TGF-ÎČRIII). TGF-ÎČ may utilize another type I receptor, activin-like kinase receptor (Alk1). TGF-ÎČ is neuroprotective in the middle cerebral artery occlusion (MCAO) model of stroke. Recently, we reported the expression pattern of TGF-ÎČ1-3 after MCAO. To establish how TGF-ÎČs exert their actions following MCAO, the present study describes the induction of TGF-ÎČRI, RII, RIII and Alk1 at 24 h, 72 h and 1 mo after transient 1 h MCAO as well as following 24 h permanent MCAO using in situ hybridization histochemistry. In intact brain, only TGF-ÎČRI had significant expression: neurons in cortical layer IV contained TGF-ÎČRI. At 24 h after the occlusion, no TGF-ÎČ receptors showed induction. At 72 h following MCAO, all four types of TGF-ÎČ receptors were induced in the infarct area, while TGF-ÎČRI and RII also appeared in the penumbra. Most cells with elevated TGF-ÎČRI mRNA levels were microglia. TGF-ÎČRII co-localized with both microglial and endothelial markers while TGF-ÎČRIII and Alk1 were present predominantly in endothels. All four TGF-ÎČ receptors were induced within the lesion 1 mo after the occlusion. In particular, TGF-ÎČRIII was further induced as compared to 72 h after MCAO. At this time point, TGF-ÎČRIII signal was predominantly not associated with blood vessels suggesting its microglial location. These data suggest that TGF-ÎČ receptors are induced after MCAO in a timely and spatially regulated fashion. TGF-ÎČ receptor expression is preceded by increased TGF-ÎČ expression. TGF-ÎČRI and RII are likely to be co-expressed in microglial cells while Alk1, TGF-ÎČRII, and RIII in endothels within the infarct where TGF-ÎČ1 may be their ligand. At later time points, TGF-ÎČRIII may also appear in glial cells to potentially affect signal transduction via TGF-ÎČRI and RII

    Asymmetrical Gene Flow in a Hybrid Zone of Hawaiian Schiedea (Caryophyllaceae) Species with Contrasting Mating Systems

    Get PDF
    Asymmetrical gene flow, which has frequently been documented in naturally occurring hybrid zones, can result from various genetic and demographic factors. Understanding these factors is important for determining the ecological conditions that permitted hybridization and the evolutionary potential inherent in hybrids. Here, we characterized morphological, nuclear, and chloroplast variation in a putative hybrid zone between Schiedea menziesii and S. salicaria, endemic Hawaiian species with contrasting breeding systems. Schiedea menziesii is hermaphroditic with moderate selfing; S. salicaria is gynodioecious and wind-pollinated, with partially selfing hermaphrodites and largely outcrossed females. We tested three hypotheses: 1) putative hybrids were derived from natural crosses between S. menziesii and S. salicaria, 2) gene flow via pollen is unidirectional from S. salicaria to S. menziesii and 3) in the hybrid zone, traits associated with wind pollination would be favored as a result of pollen-swamping by S. salicaria. Schiedea menziesii and S. salicaria have distinct morphologies and chloroplast genomes but are less differentiated at the nuclear loci. Hybrids are most similar to S. menziesii at chloroplast loci, exhibit nuclear allele frequencies in common with both parental species, and resemble S. salicaria in pollen production and pollen size, traits important to wind pollination. Additionally, unlike S. menziesii, the hybrid zone contains many females, suggesting that the nuclear gene responsible for male sterility in S. salicaria has been transferred to hybrid plants. Continued selection of nuclear genes in the hybrid zone may result in a population that resembles S. salicaria, but retains chloroplast lineage(s) of S. menziesii

    An Individual-Oriented Model on the Emergence of Support in Fights, Its Reciprocation and Exchange

    Get PDF
    Complex social behaviour of primates has usually been attributed to the operation of complex cognition. Recently, models have shown that constraints imposed by the socio-spatial structuring of individuals in a group may result in an unexpectedly high number of patterns of complex social behaviour, resembling the dominance styles of egalitarian and despotic species of macaques and the differences between them. This includes affiliative patterns, such as reciprocation of grooming, grooming up the hierarchy, and reconciliation. In the present study, we show that the distribution of support in fights, which is the social behaviour that is potentially most sophisticated in terms of cognitive processes, may emerge in the same way. The model represents the spatial grouping of individuals and their social behaviour, such as their avoidance of risks during attacks, the self-reinforcing effects of winning and losing their fights, their tendency to join in fights of others that are close by (social facilitation), their tendency to groom when they are anxious, the reduction of their anxiety by grooming, and the increase of anxiety when involved in aggression. Further, we represent the difference in intensity of aggression apparent in egalitarian and despotic macaques. The model reproduces many aspects of support in fights, such as its different types, namely, conservative, bridging and revolutionary, patterns of choice of coalition partners attributed to triadic awareness, those of reciprocation of support and ‘spiteful acts’ and of exchange between support and grooming. This work is important because it suggests that behaviour that seems to result from sophisticated cognition may be a side-effect of spatial structure and dominance interactions and it shows that partial correlations fail to completely omit these effects of spatial structure. Further, the model is falsifiable, since it results in many patterns that can easily be tested in real primates by means of existing data

    Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC

    Get PDF
    The mesenchymal stroma harbors an important population of cells that possess stem cell-like characteristics including self renewal and differentiation capacities and can be derived from a variety of different sources. These multipotent mesenchymal stem cells (MSC) can be found in nearly all tissues and are mostly located in perivascular niches. MSC have migratory abilities and can secrete protective factors and act as a primary matrix for tissue regeneration during inflammation, tissue injuries and certain cancers
    • 

    corecore