4,508 research outputs found

    Variational Integrators for Almost-Integrable Systems

    Full text link
    We construct several variational integrators--integrators based on a discrete variational principle--for systems with Lagrangians of the form L = L_A + epsilon L_B, with epsilon << 1, where L_A describes an integrable system. These integrators exploit that epsilon << 1 to increase their accuracy by constructing discrete Lagrangians based on the assumption that the integrator trajectory is close to that of the integrable system. Several of the integrators we present are equivalent to well-known symplectic integrators for the equivalent perturbed Hamiltonian systems, but their construction and error analysis is significantly simpler in the variational framework. One novel method we present, involving a weighted time-averaging of the perturbing terms, removes all errors from the integration at O(epsilon). This last method is implicit, and involves evaluating a potentially expensive time-integral, but for some systems and some error tolerances it can significantly outperform traditional simulation methods.Comment: 14 pages, 4 figures. Version 2: added informative example; as accepted by Celestial Mechanics and Dynamical Astronom

    Research on Protection of Minors: A literature Review and Interconnected Frameworks Implications for VSP Regulation and Beyond

    Get PDF
    Ofcom commissioned the Institute for Connected Communities at the University of East London (UEL) to conduct this research in order to help inform VSP guidance. The particular areas of interest identified by Ofcom were:Which risks of harm are most prevalent among minors on VSPs (considering both quantitative and qualitative evidence)? How do these harms manifest on VSPs? Are different VSP characteristics relevant to protecting users from harms

    Constraining Unmodeled Physics with Compact Binary Mergers from GWTC-1

    Get PDF
    We present a flexible model to describe the effects of generic deviations of observed gravitational wave signals from modeled waveforms in the LIGO and Virgo gravitational wave detectors. With the detection of 11 gravitational wave events from the GWTC-1 catalog, we are able to constrain possible deviations from our modeled waveforms. In this paper we present our coherent spline model that describes the deviations, then choose to validate our model on an example phenomenological and astrophysically motivated departure in waveforms based on extreme spontaneous scalarization. We find that the model is capable of recovering the simulated deviations. By performing model comparisons we observe that the spline model effectively describes the simulated departures better than a normal compact binary coalescence (CBC) model. We analyze the entire GWTC-1 catalog of events with our model and compare it to a normal CBC model, finding that there are no significant departures from the modeled template gravitational waveforms used

    Early Advanced LIGO binary neutron-star sky localization and parameter estimation

    Get PDF
    2015 will see the first observations of Advanced LIGO and the start of the gravitational-wave (GW) advanced-detector era. One of the most promising sources for ground-based GW detectors are binary neutron-star (BNS) coalescences. In order to use any detections for astrophysics, we must understand the capabilities of our parameter-estimation analysis. By simulating the GWs from an astrophysically motivated population of BNSs, we examine the accuracy of parameter inferences in the early advanced-detector era. We find that sky location, which is important for electromagnetic follow-up, can be determined rapidly (~5 s), but that sky areas may be hundreds of square degrees. The degeneracy between component mass and spin means there is significant uncertainty for measurements of the individual masses and spins; however, the chirp mass is well measured (typically better than 0.1%).Comment: 4 pages, 2 figures. Published in the proceedings of Amaldi 1

    The temperature of Britain's coalfields

    Get PDF
    Low temperature heat recovery, cooling and storage schemes, using abandoned flooded mine workings are a viable option for low carbon heating solutions within many abandoned British coalfields. The temperature of mine water is a useful parameter, coupled with depth to water, sustainable yield and recharge potential, to identify suitable locations and calculate the likely performance of heat recovery schemes. This paper aims to provide the first mapping and synthesis of the temperature of Britain's coalfields to support this emerging technology. Using the best available evidence, a median geothermal gradient of 24.1 °C/km was calculated for the British coalfields. However, geothermal gradients between separate coalfields can vary from 17.3 to 34.3 °C/km. The North East, Cumbria and Yorkshire coalfields all have mean geothermal gradients generally >30 °C/km, whilst geothermal gradients of generally <23 °C/km are measured in the Warwickshire, South Wales, Staffordshire, Douglas and Fife coalfields. Active dewatering schemes are shown to locally increase the apparent measured geothermal gradient by ingress and mixing of deeper water into the pumping shafts. This baseline spatial mapping and synthesis of coalfield temperatures offers significant benefit to those planning, designing and regulating heat recovery and storage in Britain's abandoned coalfields

    Binary evolution with LOFT

    Full text link
    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of very faint X-ray binaries, orbital period distribution of black hole X-ray binaries and neutron star spin up. For a summary, we refer to the paper.Comment: White Paper in Support of the Mission Concept of the Large Observatory for X-ray Timing. (v2 few typos corrected

    A pilot hole does not reduce the strains or risk of fracture to the lateral cortex during and following a medial opening wedge high tibial osteotomy in cadaveric specimens

    Get PDF
    © 2018 Bujnowski et al. Aim: It has been suggested that the use of a pilot-hole may reduce the risk of fracture to the lateral cortex. Therefore the purpose of this study was to determine the effect of a pilot hole on the strains and occurrence of fractures at the lateral cortex during the opening of a high tibial osteotomy (HTO) and post-surgery loading. Materials and Methods: A total of 14 cadaveric tibias were randomized to either a pilot hole (n = 7) or a no-hole (n = 7) condition. Lateral cortex strains were measured while the osteotomy was opened 9 mm and secured in place with a locking plate. The tibias were then subjected to an initial 800 N load that increased by 200 N every 5000 cycles, until failure or a maximum load of 2500 N. Results: There was no significant difference in the strains on the lateral cortex during HTO opening between the pilot hole and no-hole conditions. Similarly, the lateral cortex and fixation plate strains were not significantly different during cyclic loading between the two conditions. Using a pilot hole did not significantly decrease the strains experienced at the lateral cortex, nor did it reduce the risk of fracture. Conclusions: The nonsignificant differences found here most likely occurred because the pilot hole merely translated the stress concentration laterally to a parallel point on the surface of the hole

    Reduced cell cohesiveness of outgrowths from eccrine sweat glands delays wound closure in elderly skin

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134171/1/acel12493_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134171/2/acel12493.pd

    Spaceborne radar observations: A guide for Magellan radar-image analysis

    Get PDF
    Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high Venusian latitudes. Examples of anomalies and system artifacts that can affect image interpretation are described
    • …
    corecore