134 research outputs found

    Systemic antifungal treatment after posaconazole prophylaxis: results from the SEIFEM 2010-C survey.

    Get PDF
    OBJECTIVES: To investigate the incidence, treatment and outcome of breakthrough invasive fungal infections (IFIs) in adult acute myeloid leukaemia (AML) patients after posaconazole prophylaxis. METHODS: From January 2010 to April 2012, all consecutive patients with newly diagnosed AML were prospectively registered at 33 participating Italian centres. All cases of IFIs occurring within 30 days after the end of the first induction chemotherapy were recorded. The strategy of antifungal treatment (empirical, pre-emptive or targeted) and the drugs used were analysed. ClinicalTrials.gov code: NCT01315925. RESULTS: In total, 1192 patients with newly diagnosed AML were enrolled in the study, of whom 510 received posaconazole prophylaxis and were included in the present analysis. Of these patients, 140 (27%) needed systemic antifungal treatment. Among the 127 evaluable cases, an empirical approach was utilized in 102 patients (80%), a pre-emptive approach in 19 patients (15%) and targeted therapy in 6 patients (5%). Only five patients died of IFIs (three in the empirical group and two in the targeted group; 4%). A critical review of IFI diagnoses at 30 days demonstrated that among the patients treated empirically, ∼30% were not affected by IFIs but rather only by fever of unidentified origin. A comparison between the empirical and the pre-emptive groups showed no significant differences regarding the attributable and overall mortalities. CONCLUSIONS: This study confirms that posaconazole prophylaxis reduces the incidence of breakthrough IFIs and does not modify the efficacy of subsequent systemic antifungal treatment, regardless of the approach (empirical or pre-emptive) or the antifungal drug used

    Infections in patients with lymphoproliferative diseases treated with targeted agents: SEIFEM multicentric retrospective study

    Get PDF
    We describe the opportunistic infections occurring in 362 patients with lymphoproliferative disorders treated with ibrutinib and idelalisib in clinical practice. Overall, 108 of 362 patients (29·8%) developed infections, for a total of 152 events. Clinically defined infections (CDI) were 49·3% (75/152) and microbiologically defined infections (MDI) were 50·7% (77/152). Among 250 patients treated with ibrutinib, 28·8% (72/250) experienced one or more infections, for a total of 104 episodes. MDI were 49% (51/104). Bacterial infections were 66·7% (34/51), viral 19·6% (10/51) and invasive fungal diseases (IFD) 13·7% (7/51). Among the 112 patients treated with idelalisib, 32·1% (36/112) experienced one or more infections, for a total of 48 episodes. MDI were 54·2% (26/48). Bacterial infections were 34·6% (9/26), viral 61·5% (16/26) and IFD 3·8% (1/26). With ibrutinib, the rate of bacterial infections was significantly higher compared to idelalisib (66·7% vs. 34·6%; P = 0·007), while viral infections were most frequent in idelalisib (61·5% vs. 19·6%; P < 0·001). Although a higher rate of IFD was observed in patients treated with ibrutinib, the difference was not statistically significant (13·7% vs. 3·8% respectively; P = 0·18). Bacteria are the most frequent infections with ibrutinib, while viruses are most frequently involved with idelalisib

    Antimicrobial Resources for Disinfection of Potable Water Systems for Future Spacecraft

    Get PDF
    As human exploration adventures beyond low earth orbit, life support systems will require more innovation and research to become self-sustaining and durable. One major concern about future space travel is the ability to store and decontaminate water for consumption and hygiene. This project explores materials and technologies for possible use in future water systems without requiring point-of-use (POU) filtering or chemical additives such as iodine or silver that require multiple doses to remain effective. This experimentation tested the efficacy of a variety of antimicrobial materials against biofilm formation in a high shear CDC Biofilm Reactor (CBR) and some materials in a low shear Drip Flow Reactor (DFR) which(also utilizes ultra violet light emitting diodes (UVLEDs) as an antimicrobial resource. Most materials were tested in the CBR using the ASTM E 2562-07 1method involving the Pseudomonas aeruginosa and coupon samples that vary in their antimicrobial coatings and surface layer topographies. In a controlled environmental chamber (CEC), the CBR underwent a batch phase, continuous flow phase (CFP), and a harvest before analysis. The DFR portion of this experimentation was performed in order to assess the antimicrobial capabilities of ultraviolet-A LEDs (UV-A) in potable water systems. The ASTM E 2647-08 was modified in order to incorporate UV-A LEDs and to operate as a closed, re-circulating system. The modified DFR apparatus that was utilized contains 4 separate channels each of which contain 2 UV-A LEDs (1 chamber is masked off to serve as a control) and each channel is equipped with its own reservoir and peristaltic pump head. The 10 DFR runs discussed in this report include 4 initial experimental runs that contained blank microscope slides to test the UVA LEDs alone, 2 that incorporated solid silver coupons, 2 that utilized titanium dioxide (Ti02) coupons as a photocatalyst, and 2 runs that utilized silver coated acrylic slides. Both the CBR and DFR experiments were analyzed for microbial content via heterotrophic plate counts (HPC) and acridine orange direct counts (AODC). Ofthe materials used in the CBR, only two materials performed as anti~icrobials under high shear conditions (a reduction of 5 or more logs) showing a>7 log reduction in viable microbes

    Considerations on antimicrobial prophylaxis in patients with lymphoproliferative diseases: A SEIFEM group position paper

    Get PDF
    The therapeutic armamentarium for the treatment of patients with lymphoproliferative diseases has grown considerably over the most recent years, including a large use of new immunotherapeutic agents. As a consequence, the epidemiology of infectious complications in this group of patients is poorly documented, and even more importantly, the potential benefit of antimicrobial prophylaxis remains a matter of debate when considering the harmful effect from the emergence of multidrug resistant pathogens. The present position paper is addressed to all hematologists treating patients affected by lymphoproliferative malignancies with the aim to provide clinicians with a useful tool for the prevention of bacterial, fungal and viral infections

    Candida dubliniensis: An Appraisal of Its Clinical Significance as a Bloodstream Pathogen

    Get PDF
    A nine-year prospective study (2002–2010) on the prevalence of Candida dubliniensis among Candida bloodstream isolates is presented. The germ tube positive isolates were provisionally identified as C. dubliniensis by presence of fringed and rough colonies on sunflower seed agar. Subsequently, their identity was confirmed by Vitek2 Yeast identification system and/or by amplification and sequencing of the ITS region of rDNA. In all, 368 isolates were identified as C. dubliniensis; 67.1% came from respiratory specimens, 11.7% from oral swabs, 9.2% from urine, 3.8% from blood, 2.7% from vaginal swabs and 5.4% from other sources. All C. dubliniensis isolates tested by Etest were susceptible to voriconazole and amphotericin B. Resistance to fluconazole (≥8 µg/ml) was observed in 2.5% of C. dubliniensis isolates, 7 of which occurred between 2008–2010. Of note was the diagnosis of C. dubliniensis candidemia in 14 patients, 11 of them occurring between 2008–2010. None of the bloodstream isolate was resistant to fluconazole, while a solitary isolate showed increased MIC to 5-flucytosine (>32 µg/ml) and belonged to genotype 4. A review of literature since 1999 revealed 28 additional cases of C. dubliniensis candidemia, and 167 isolates identified from blood cultures since 1982. In conclusion, this study highlights a greater role of C. dubliniensis in bloodstream infections than hitherto recognized

    Changes in Human Fecal Microbiota Due to Chemotherapy Analyzed by TaqMan-PCR, 454 Sequencing and PCR-DGGE Fingerprinting

    Get PDF
    BACKGROUND: We investigated whether chemotherapy with the presence or absence of antibiotics against different kinds of cancer changed the gastrointestinal microbiota. METHODOLOGY/PRINCIPAL FINDINGS: Feces of 17 ambulant patients receiving chemotherapy with or without concomitant antibiotics were analyzed before and after the chemotherapy cycle at four time points in comparison to 17 gender-, age- and lifestyle-matched healthy controls. We targeted 16S rRNA genes of all bacteria, Bacteroides, bifidobacteria, Clostridium cluster IV and XIVa as well as C. difficile with TaqMan qPCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting and high-throughput sequencing. After a significant drop in the abundance of microbiota (p = 0.037) following a single treatment the microbiota recovered within a few days. The chemotherapeutical treatment marginally affected the Bacteroides while the Clostridium cluster IV and XIVa were significantly more sensitive to chemotherapy and antibiotic treatment. DGGE fingerprinting showed decreased diversity of Clostridium cluster IV and XIVa in response to chemotherapy with cluster IV diversity being particularly affected by antibiotics. The occurrence of C. difficile in three out of seventeen subjects was accompanied by a decrease in the genera Bifidobacterium, Lactobacillus, Veillonella and Faecalibacterium prausnitzii. Enterococcus faecium increased following chemotherapy. CONCLUSIONS/SIGNIFICANCE: Despite high individual variations, these results suggest that the observed changes in the human gut microbiota may favor colonization with C. difficile and Enterococcus faecium. Perturbed microbiota may be a target for specific mitigation with safe pre- and probiotics
    • …
    corecore