30 research outputs found
Efficient CO2-Reducing Activity of NAD-Dependent Formate Dehydrogenase from Thiobacillus sp KNK65MA for Formate Production from CO2 Gas
NAD-dependent formate dehydrogenase (FDH) from Candida boidinii (CbFDH) has been widely used in various CO2 reduction systems but its practical applications are often impeded due to low CO2-reducing activity. In this study, we demonstrated superior CO2-reducing properties of FDH from Thiobacillus sp. KNK65MA (TsFDH) for production of formate from CO2 gas. To discover more efficient CO2-reducing FDHs than a reference enzyme e. CbFDH, five FDHs were selected with biochemical properties and then, their CO2-reducing activities were evaluated. All FDHs including CbFDH showed better CO2-reducing activities at acidic pHs than at neutral pHs and four FDHs were more active than CbFDH in the CO2 reduction reaction. In particular, the FDH from Thiobacillus sp. KNK65IVIA (TsFDH) exhibited the highest CO2-reducing activity and had a dramatic preference for the reduction reaction, i.e., a 84.2-fold higher ratio of CO2 reduction to formate oxidation in catalytic efficiency (k(cat)/K-B) compared to CbFDH. Formate was produced from CO2 gas using TsFDH and CbFDH, and TsFDH showed a 5.8-fold higher formate production rate than CbFDH. A sequence and structural comparison showed that FDHs with relatively high CO2-reducing activities had elongated N- and C-terminal loops. The experimental results demonstrate that TsFDH can be an alternative to CbFDH as a biocatalyst in CO2 reduction systemsope
Evaluating the potential impact of proton carriers on syntrophic propionate oxidation
Anaerobic propionic acid degradation relies on interspecies electron transfer (IET) between propionate oxidisers and electron acceptor microorganisms, via either molecular hydrogen, formate or direct transfers. We evaluated the possibility of stimulating direct IET, hence enhancing propionate oxidation, by increasing availability of proton carriers to decrease solution resistance and reduce pH gradients. Phosphate was used as a proton carrying anion, and chloride as control ion together with potassium as counter ion. Propionic acid consumption in anaerobic granules was assessed in a square factorial design with ratios (1:0, 2:1, 1:1, 1:2 and 0:1) of total phosphate (TP) to Cl-, at 1X, 10X, and 30X native conductivity (1.5 mS.cm(-1)). Maximum specific uptake rate, half saturation, and time delay were estimated using model-based analysis. Community profiles were analysed by fluorescent in situ hybridisation and 16S rRNA gene pyrosequencing. The strongest performance was at balanced (1:1) ratios at 10X conductivity where presumptive propionate oxidisers namely Syntrophobacter and Candidatus Cloacamonas were more abundant. There was a shift from Methanobacteriales at high phosphate, to Methanosaeta at low TP:Cl ratios and low conductivity. A lack of response to TP, and low percentage of presumptive electroactive organisms suggested that DIET was not favoured under the current experimental conditions
Comparative biochemical analysis during the anaerobic digestion of lignocellulosic biomass from six morphological parts of Williams Cavendish banana (Triploid Musa AAA group) plants
We studied banana lignocellulosic biomass (BALICEBIOM) that is abandoned after fruit harvesting, and assessed its biochemical methane potential, because of its potential as an energy source. We monitored biogas production from six morphological parts (MPs) of the "Williams Cavendish" banana cultivar using a modified operating procedure (KOP) using KOH. Volatile fatty acid (VFA) production was measured using high performance liquid chromatography. The bulbs, leaf sheaths, petioles-midribs, leaf blades, rachis stems, and floral stalks gave total biogas production of 256, 205, 198, 126, 253, and 221 ml g-1 dry matter, respectively, and total biomethane production of 150, 141, 127, 98, 162, and 144 ml g-1, respectively. The biogas production rates and yields depended on the biochemical composition of the BALICEBIOM and the ability of anaerobic microbes to access fermentable substrates. There were no significant differences between the biogas analysis results produced using KOP and gas chromatography. Acetate was the major VFA in all the MP sample culture media. The bioconversion yields for each MP were below 50 %, showing that these substrates were not fully biodegraded after 188 days. The estimated electricity that could be produced from biogas combustion after fermenting all of the BALICEBIOM produced annually by the Cameroon Development Corporation-Del Monte plantations for 188 days is approximately 10.5 × 106 kW h (which would be worth 0.80-1.58 million euros in the current market). This bioenergy could serve the requirements of about 42,000 people in the region, although CH4 productivity could be improved. © 2013 Springer Science+Business Media Dordrecht
Syntrophic Communities in Methane Formation from High Strength Wastewaters
Among the goals of environmentally sound waste treatment is the recycling of organic wastes. The most practiced options are composting and anaerobic digestion, both processes being carried out by microorganisms. This book provides an overview of the various ways microbes are doing their job and gives the reader an impression of their potential. The sixteen chapters of this book summarize the advantages and disadvantages of treatment processes, whether they are aerobic like composting or work without oxygen like anaerobic digestion for biogas (methane) production. These chapters show the potential of microorganisms to create valuable resources from otherwise wasted materials. These resources include profitable organic, humus-like soil conditioners or fertilizer components which are often suppressive to plant diseases. Composts may thus improve soil carbon sequestration, or support sustainable agriculture by reducing the need for mineral fertilizers or pesticides. If anaerobic digestion is used, the biogas produced may replace fossil fuels. Thus, proper biological waste treatment with the help of microorganisms should contribute to a reduction of anthropogenic greenhouse gas productio
The Mosaic Genome of Anaeromyxobacter dehalogenans Strain 2CP-C Suggests an Aerobic Common Ancestor to the Delta-Proteobacteria
©2008 Thomas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pone.0002103Anaeromyxobacter dehalogenans strain 2CP-C is a versaphilic delta-Proteobacterium distributed throughout many diverse soil and sediment environments. 16S rRNA gene phylogenetic analysis groups A. dehalogenans together with the myxobacteria, which have distinguishing characteristics including strictly aerobic metabolism, sporulation, fruiting body formation, and surface motility. Analysis of the 5.01 Mb strain 2CP-C genome substantiated that this organism is a myxobacterium but shares genotypic traits with the anaerobic majority of the delta-Proteobacteria (i.e., the Desulfuromonadales). Reflective of its respiratory versatility, strain 2CP-C possesses 68 genes coding for putative c-type cytochromes, including one gene with 40 heme binding motifs. Consistent with its relatedness to the myxobacteria, surface motility was observed in strain 2CP-C and multiple types of motility genes are present, including 28 genes for gliding, adventurous (A-) motility and 17 genes for type IV pilus-based motility (i.e., social (S-) motility) that all have homologs in Myxococcus xanthus. Although A. dehalogenans shares many metabolic traits with the anaerobic majority of the delta- Proteobacteria, strain 2CP-C grows under microaerophilic conditions and possesses detoxification systems for reactive oxygen species. Accordingly, two gene clusters coding for NADH dehydrogenase subunits and two cytochrome oxidase gene clusters in strain 2CP-C are similar to those in M. xanthus. Remarkably, strain 2CP-C possesses a third NADH dehydrogenase gene cluster and a cytochrome cbb3 oxidase gene cluster, apparently acquired through ancient horizontal gene transfer from a strictly anaerobic green sulfur bacterium. The mosaic nature of the A. dehalogenans strain 2CP-C genome suggests that the metabolically versatile, anaerobic members of the delta-Proteobacteria may have descended from aerobic ancestors with complex lifestyles
Methanogens: Syntrophic Metabolism
Syntrophy is a mutualistic interaction in which two metabolically different types of microorganisms are linked by the need to keep metabolites exchanged between the two partners at low concentrations to make the overall metabolism of both organisms feasible. In most cases, the cooperation is based on the transfer of hydrogen, formate, or acetate from fermentative bacteria to methanogens to make the degradation of electron-rich substrates thermodynamically favorable. Syntrophic metabolism proceeds at very low Gibbs’ free energy changes, close to the minimum free energy change needed to conserve energy biologically, which is the energy needed to transport one proton across the cytoplasmic membrane. Pathways for syntrophic degradation of fatty acids predict the net synthesis of about one-third of an ATP per round of catabolism. Syntrophic metabolism entails critical oxidation-reduction reactions in which H2 or formate production would be thermodynamically unfavorable unless energy is invested. Molecular insights into the membrane processes involved in ion translocation and reverse electron transport revealed that syntrophs harbor multiple systems for reverse electron transfer. While much evidence supports the interspecies transfer of H2 and formate, other mechanisms of interspecies electron transfer exist including cysteine cycling and possibly direct interspecies electron transfer as electric current via conductive pili or (semi)conductive minerals