168 research outputs found

    Septic Shock by Gram-Negative Infections: Role of Outer Membrane Proteins

    Get PDF
    The magnitude of septic shock as a clinical problem is often understated. Despite advances in our ability to diagnose and treat infectious diseases, severe sepsis leading to shock due to gram-negative infections remains one of the leading causes of mortality worldwide. Septic shock develops because of a disregulation in the host response, and the mechanisms initially recruited to fight infection produce life-threatening tissue damage and death. Recent research has witnessed a significant increase in our understanding of host-pathogen interactions, particularly in the area of innate immunity and the molecular recognition of gram-positive and gram-negative bacteria. Important new mediators of sepsis and novel mechanisms of host-cell toxicity have been identified and, together with clinical trials targeting pathways considered central to sepsis pathogenesis, provide new insight into the molecular and cellular basis of sepsis for the formulation of new strategies of intervention. Research on septic shock pathogenesis by gram-negative bacteria is mainly focused on the understanding of the molecular and cellular role played by lipopolysaccharide (LPS). Strong experimental evidence and clinical observations suggest that the release of proinflammatory cytokine mediators by LPS-responsive cells (mainly macrophages, endothelial cells and neutrophils) in response to toxic products sets in motion the genetic and physiologic program that manifests as shock. The best characterized of these toxic components is LPS, which is considered as a paradigm for other less well-characterized toxic microbial molecules. The immune protection stimulated by highly purified LPS in animals does not resolve the symptomatology of septic shock, while LPS mixed to outer membrane proteins shows a better protective activity. Several studies evidence the major role played by outer membrane proteins in the molecular interaction between the host cell and the gram-negative bacteria. Endotoxin-associated proteins consist of a complex of several major proteins that are intimately associated with the LPS. Very little is known about release of non-LPS gramnegative outer membrane components such as OMPs in sepsis. Among the OMPs, porins have been shown to play an important role in pathogenesis of bacterial infections. Porins were pyrogenic in rabbits and elicited a localized reaction when used as the sensiting and eliciting agent. Porins were also shown to kill D-galactosamine sensitized LPS-responsive and LPS-unresponsive mice. Treatment of Human Umbilical Vein Endothelial Cells: (HUVEC) with porins increased the transmigration of different leukocyte populations, inparticular of neutrophils. Porins by several gram-negative bacteria induce cytokine release by human leukocytes as well as enhancement of cytokine gene expression. Also, other components of the bacterial envelope are important in the induction and pathogenesis of septic shock such as bacterial lipoproteins (LP). As anti-LPS therapies does not seem to improve by the addition of proteins from the outer membrane or small fragments of these proteins, a great alternative to existing strategies will involve the blockage of signal transduction pathways, cytokine and inflammatory mechanisms

    Review of a viral peptide nanosystem for intracellular delivery

    Get PDF
    The internalization of bioactive molecules is one of the most critical problems to overcome in theranostics. In order to improve pharmacokinetic and pharmacodynamic proper- ties, synthetic transporters are widely investigated. A new nanotechnological transporter, gH625, is based on a viral peptide sequence derived from the herpes simplex virus type 1 glycoprotein H (gH) that has proved to be a useful delivery vehicle, due to its intrinsic properties of inducing membrane perturbation. The peptide functionalization with several kinds of nanoparticles like quantum dots, dendrimers, and liposomes could be of particular interest in biomedical applica- tions to improve drug release within cells, to increase site-specific action, and eventually to reduce related cytotoxicity. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. (DOI: 10.1117/1.JNP.7.071599

    Fusogenic domains in herpes simplex virus type 1 glycoprotein H.

    Get PDF
    Infection of eukaryotic cells by enveloped viruses requires fusion between the viral envelope and the cellular plasma or endosomal membrane. The actual merging of the two membranes is mediated by viral envelope glycoproteins, which generally contain a highly hydrophobic region termed the fusion peptide. The entry of herpesviruses is mediated by three conserved proteins: glycoproteins B, H (gH), and L. However, how fusion is executed remains unknown. Herpes simplex virus type 1 gH exhibits features typical of viral fusion glycoproteins, and its ectodomain seems to contain a putative internal fusion peptide. Here, we have identified additional internal segments able to interact with membranes and to induce membrane fusion of large unilamellar vesicles. We have applied the hydrophobicity-at-interface scale proposed by Wimley and White (Wimley, W. C., and White, S. H. (1996) Nat. Struct. Biol. 3, 842-848) to identify six hydrophobic stretches within gH with a tendency to partition into the membrane interface, and four of them were able to induce membrane fusion. Experiments in which equimolar mixtures of gH peptides were used indicated that different fusogenic regions may act in a synergistic way. The functional and structural characterization of these segments suggests that herpes simplex virus type 1 gH possesses several fusogenic internal peptides that could participate in the actual fusion event

    Toxicity Effects of Functionalized Quantum Dots, Gold and Polystyrene Nanoparticles on Target Aquatic Biological Models: A Review

    Get PDF
    Nano-based products are widespread in several sectors, including textiles,medical-products, cosmetics, paints and plastics. Nanosafety and safe-by-design are driving nanoparticle (NP) production and applications through NP functionalization (@NPs). Indeed, @NPs frequently present biological effects that differ fromthe parentmaterial. This paper reviews the impact of quantumdots (QDs), gold nanoparticles (AuNPs), and polystyrene-coredNPs (PSNPs), evidencing the role ofNP functionalization in toxicity definition. Key biological models were taken into consideration for NP evaluation: Saccharomyces cerevisiae, fresh- (F) and saltwater (S)microalgae (Raphidocelis subcapitata (F), Scenedesmus obliquus (F) and Chlorella spp. (F), and Phaeodactylum tricornutum (S)), Daphnia magna, and Xenopus laevis. QDs are quite widespread in technological devices, and they are known to induce genotoxicity and oxidative stress that can drastically change according to the coating employed. For example, AuNPs are frequently functionalized with antimicrobial peptides, which is shown to both increase their activity and decrease the relative environmental toxicity. P-NPs are frequently coated with NH2 for cationic and COOH for anionic surfaces, but when positively charged toxicity effects can be observed. Careful assessment of functionalized and non-functionalized NPs is compulsory to also understand their potential direct and indirect effects when the coating is removed or degraded

    Peptides to Overcome the Limitations of Current Anticancer and Antimicrobial Nanotherapies

    Get PDF
    Biomedical research devotes a huge effort to the development of efficient non-viral nanovectors (NV) to improve the effectiveness of standard therapies. NVs should be stable, sustainable and biocompatible and enable controlled and targeted delivery of drugs. With the aim to foster the advancements of such devices, this review reports some recent results applicable to treat two types of pathologies, cancer and microbial infections, aiming to provide guidance in the overall design of personalized nanomedicines and highlight the key role played by peptides in this field. Additionally, future challenges and potential perspectives are illustrated, in the hope of accelerating the translational advances of nanomedicine

    Enforcing the positive charge of N-termini enhances membrane interaction and antitumor activity of bovine seminal ribonuclease

    Get PDF
    AbstractBinding to cell membrane, followed by translocation into the cytosol and RNA degradation, is a necessary requirement to convert a ribonuclease into a cytotoxin for malignant tumor cells. In this paper, we investigate the membrane binding attitude of bovine seminal ribonuclease (BS-RNase) and its variant G38K-BS-RNase, bearing an enforced cluster of positive charges at the N-termini surface. By using a combination of biophysical techniques, including CD, SPR and ESR, we find for the two proteins a common, two-step mechanism of interaction with synthetic liposomes, an initial binding to the bilayer surface, driven by electrostatic interactions, followed by a shallow penetration in the lipid core. Protein binding effectively perturbs lipid packing and dynamics. Remarkably, the higher G38K-BS-RNase membrane interacting capability well correlates with its increased cytotoxicity for tumor cells. Overall, these studies shed light on the mechanism of membrane binding and perturbation, proving definitely the importance of electrostatic interactions in the cytotoxic activity of BS-RNase, and provide a rational basis to design proteins with anticancer potential

    Quantitative and qualitative effect of gH625 on the nanoliposome-mediated delivery of mitoxantrone anticancer drug to HeLa cells

    Get PDF
    The present work investigates in vitro the delivery of the anticancer drug mitoxantrone (MTX) to HeLa cancer cells by means of liposomes functionalized with the novel cell penetrating peptide gH625. This hydrophobic peptide enhances the delivery of doxorubicin to the cytoplasm of cancer cells, while the mechanism of this enhancement has not yet been understood. Here, in order to get a better insight into the role of gH625 on the mechanism of liposome-mediated drug delivery, we treated HeLa cells with liposomes functionalized with gH625 and loaded with MTX; liposome were characterized in terms of their physico-chemical properties and drug release kinetics. To quantify the MTX uptake and to study the subcellular drug distribution and interaction, we took advantage of the intrinsic fluorescence of MTX and of the fluorescence-based techniques like fluorescence-activated cell sorting (FACS) and confocal spectral imaging (CSI). gH625 liposomes showed an enhanced staining of the internalized drug is observed mainly in hydrophobic regions of the cytoplasm, where the increased presence of an oxidative metabolite of the drug is observed. MTX delivery with gH625-decorated nanoliposomes enhances the quantity of both the intracellular drug and of its oxidative metabolite and contributes to higher anticancer efficacy of the drug

    The identification of a novel Sulfolobus islandicus CAMP-like peptide points to archaeal microorganisms as cell factories for the production of antimicrobial molecules

    Get PDF
    Background: Pathogenic bacteria easily develop resistance to conventional antibiotics so that even relatively new molecules are quickly losing efficacy. This strongly encourages the quest of new antimicrobials especially for the treatment of chronic infections. Cationic antimicrobial peptides (CAMPs) are small positively charged peptides with an amphipathic structure, active against Gram-positive and Gram-negative bacteria, fungi, as well as protozoa.Results: A novel (CAMP)-like peptide (VLL-28) was identified in the primary structure of a transcription factor, Stf76, encoded by pSSVx, a hybrid plasmid-virus from the archaeon Sulfolobus islandicus. VLL-28 displays chemical, physical and functional properties typical of CAMPs. Indeed, it has a broad-spectrum antibacterial activity and acquires a defined structure in the presence of membrane mimetics. Furthermore, it exhibits selective leakage and fusogenic capability on vesicles with a lipid composition similar to that of bacterial membranes. VLL-28 localizes not only on the cell membrane but also in the cytoplasm of Escherichia coli and retains the ability to bind nucleic acids. These findings suggest that this CAMP-like peptide could exert its antimicrobial activity both on membrane and intra cellular targets.Conclusions: VLL-28 is the first CAMP-like peptide identified in the archaeal kingdom, thus pointing to archaeal microorganisms as cell factories to produce antimicrobial molecules of biotechnological interest. Furthermore, results from this work show that DNA/RNA-binding proteins could be used as sources of CAMPs

    Peptide gH625 enters into neuron and astrocyte cell lines and crosses the blood-brain barrier in rats.

    Get PDF
    Peptide gH625, derived from glycoprotein H of herpes simplex virus type 1, can enter cells efficiently and deliver a cargo. Nanoparticles armed with gH625 are able to cross an in vitro model of the blood-brain barrier (BBB). In the present study, in vitro experiments were performed to investigate whether gH625 can enter and accumulate in neuron and astrocyte cell lines. The ability of gH625 to cross the BBB in vivo was also evaluated. gH625 was administered in vivo to rats and its presence in the liver and in the brain was detected. Within 3.5 hours of intravenous administration, gH625 can be found beyond the BBB in proximity to cell neurites. gH625 has no toxic effects in vivo, since it does not affect the maximal oxidative capacity of the brain or the mitochondrial respiration rate. Our data suggest that gH625, with its ability to cross the BBB, represents a novel nanocarrier system for drug delivery to the central nervous system. These results open up new possibilities for direct delivery of drugs into patients in the field of theranostics and might address the treatment of several human disease

    Viral fusion peptides induce several signal transduction pathway activations that are essential for interleukin-10 and beta-interferon production

    Get PDF
    Objectives: The deciphering of intracellular signaling pathways that are activated by the interaction between viral fusion peptides and cellular membranes are important for the understanding of both viral replication strategies and host defense mechanisms. Methods: Fusion peptides of several enveloped viruses belonging to different virus families were prepared by standard 9-fluorenylmethoxycarbonyl polyamine solid-phase synthesis and used to stimulate U937 cells in vitro to analyze the phosphorylation patterns of the signaling pathways (PKC, Src, Akt, and MAPK pathways). Immunoprecipitation and Western blotting were carried out by using phosphospecific antibodies. All samples were also assayed for the presence of IL-10 and IFN-beta by ELISA and activation of nuclear factors (AP-1 and NF-kappa B). Results: We have demonstrated that hydrophobic domains of fusion proteins are able to induce several transduction pathways that lead to cytokine (IFN-beta and IL-10) production, an event that appears to be dependent on early activation of AP-1 and NF-kappa B. Conclusions: The results obtained on the signaling activity of fusion peptides from different viruses enabled us to shed some light on the complex mechanism of viral entry and more precisely we focused on the exact signaling event induced by hydrophobic domains characteristic of fusion peptides interacting with the cell membrane. Copyright (C) 2010 S. Karger AG, Base
    corecore