15 research outputs found

    A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors

    Get PDF
    IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole. The main goal of IceCube is the detection of astrophysical neutrinos and the identification of their sources. High-energy muon neutrinos are observed via the secondary muons produced in charge current interactions with nuclei in the ice. Currently, the best performing muon track directional reconstruction is based on a maximum likelihood method using the arrival time distribution of Cherenkov photons registered by the experiment\u27s photomultipliers. A known systematic shortcoming of the prevailing method is to assume a continuous energy loss along the muon track. However at energies >1 TeV the light yield from muons is dominated by stochastic showers. This paper discusses a generalized ansatz where the expected arrival time distribution is parametrized by a stochastic muon energy loss pattern. This more realistic parametrization of the loss profile leads to an improvement of the muon angular resolution of up to 20% for through-going tracks and up to a factor 2 for starting tracks over existing algorithms. Additionally, the procedure to estimate the directional reconstruction uncertainty has been improved to be more robust against numerical errors

    Experimental approaches to study the nutritional value of food ingredients for dogs and cats

    No full text
    This review covers methods that have been applied to study the nutrient value or quality of specific ingredients fed to dogs, cats and comparable species (i.e. foxes, minks, rats, etc.). Typically, the nutritional value or utilization of a specific ingredient is measured by total tract digestibility and has been expanded through the measurement of total nutrient balance (i.e. nitrogen or energy). However, to better understand digestion it is necessary to obtain a more accurate measurement of nutrients entering and leaving the small intestine. Accurate measurement of small intestinal digestion is crucial in dogs and cats because nutrient digestion and absorption occurs primarily in the small intestine. Measuring small intestinal digestibility requires access to digesta leaving the small intestine and can be obtained by placing a cannula at the terminal ileum. This approach also necessitates the use of markers (e.g. chromic oxide) to monitor flow of digesta. Specifically, this approach has been used for the direct measurement of intestinal digestion of carbohydrates and amino acids. It also permits a separate measurement of large intestinal digestion which is particularly useful for the study of fiber fermentation. Passage of foods through the gastrointestinal tract is also an important component of utilization and these methods are reviewed
    corecore