62 research outputs found

    Genome-Wide Scan Identifies TNIP1, PSORS1C1, and RHOB as Novel Risk Loci for Systemic Sclerosis

    Get PDF
    Systemic sclerosis (SSc) is an orphan, complex, inflammatory disease affecting the immune system and connective tissue. SSc stands out as a severely incapacitating and life-threatening inflammatory rheumatic disease, with a largely unknown pathogenesis. We have designed a two-stage genome-wide association study of SSc using case-control samples from France, Italy, Germany, and Northern Europe. The initial genome-wide scan was conducted in a French post quality-control sample of 564 cases and 1,776 controls, using almost 500 K SNPs. Two SNPs from the MHC region, together with the 6 loci outside MHC having at least one SNP with a P<10−5 were selected for follow-up analysis. These markers were genotyped in a post-QC replication sample of 1,682 SSc cases and 3,926 controls. The three top SNPs are in strong linkage disequilibrium and located on 6p21, in the HLA-DQB1 gene: rs9275224, P = 9.18×10−8, OR = 0.69, 95% CI [0.60–0.79]; rs6457617, P = 1.14×10−7 and rs9275245, P = 1.39×10−7. Within the MHC region, the next most associated SNP (rs3130573, P = 1.86×10−5, OR = 1.36 [1.18–1.56]) is located in the PSORS1C1 gene. Outside the MHC region, our GWAS analysis revealed 7 top SNPs (P<10−5) that spanned 6 independent genomic regions. Follow-up of the 17 top SNPs in an independent sample of 1,682 SSc and 3,926 controls showed associations at PSORS1C1 (overall P = 5.70×10−10, OR:1.25), TNIP1 (P = 4.68×10−9, OR:1.31), and RHOB loci (P = 3.17×10−6, OR:1.21). Because of its biological relevance, and previous reports of genetic association at this locus with connective tissue disorders, we investigated TNIP1 expression. A markedly reduced expression of the TNIP1 gene and also its protein product were observed both in lesional skin tissue and in cultured dermal fibroblasts from SSc patients. Furthermore, TNIP1 showed in vitro inhibitory effects on inflammatory cytokine-induced collagen production. The genetic signal of association with TNIP1 variants, together with tissular and cellular investigations, suggests that this pathway has a critical role in regulating autoimmunity and SSc pathogenesis

    Phenotypes Determined by Cluster Analysis and Their Survival in the Prospective European Scleroderma Trials and Research Cohort of Patients With Systemic Sclerosis

    Get PDF
    Objective: Systemic sclerosis (SSc) is a heterogeneous connective tissue disease that is typically subdivided into limited cutaneous SSc (lcSSc) and diffuse cutaneous SSc (dcSSc) depending on the extent of skin involvement. This subclassification may not capture the entire variability of clinical phenotypes. The European Scleroderma Trials and Research (EUSTAR) database includes data on a prospective cohort of SSc patients from 122 European referral centers. This study was undertaken to perform a cluster analysis of EUSTAR data to distinguish and characterize homogeneous phenotypes without any a priori assumptions, and to examine survival among the clusters obtained. / Methods: A total of 11,318 patients were registered in the EUSTAR database, and 6,927 were included in the study. Twenty‐four clinical and serologic variables were used for clustering. / Results: Clustering analyses provided a first delineation of 2 clusters showing moderate stability. In an exploratory attempt, we further characterized 6 homogeneous groups that differed with regard to their clinical features, autoantibody profile, and mortality. Some groups resembled usual dcSSc or lcSSc prototypes, but others exhibited unique features, such as a majority of lcSSc patients with a high rate of visceral damage and antitopoisomerase antibodies. Prognosis varied among groups and the presence of organ damage markedly impacted survival regardless of cutaneous involvement. / Conclusion: Our findings suggest that restricting subsets of SSc patients to only those based on cutaneous involvement may not capture the complete heterogeneity of the disease. Organ damage and antibody profile should be taken into consideration when individuating homogeneous groups of patients with a distinct prognosis

    A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets.

    No full text
    AIMS/HYPOTHESIS: Glucagon-like peptide 1 (GLP-1) is a major incretin, mainly produced by the intestinal L cells, with beneficial actions on pancreatic beta cells. However, while in vivo only very small amounts of GLP-1 reach the pancreas in bioactive form, some observations indicate that GLP-1 may also be produced in the islets. We performed comprehensive morphological, functional and molecular studies to evaluate the presence and various features of a local GLP-1 system in human pancreatic islet cells, including those from type 2 diabetic patients.; METHODS: The presence of insulin, glucagon, GLP-1, proconvertase (PC) 1/3 and PC2 was determined in human pancreas by immunohistochemistry with confocal microscopy. Islets were isolated from non-diabetic and type 2 diabetic donors. GLP-1 protein abundance was evaluated by immunoblotting and matrix-assisted laser desorption-ionisation-time of flight (MALDI-TOF) mass spectrometry. Single alpha and beta cell suspensions were obtained by enzymatic dissociation and FACS sorting. Glucagon and GLP-1 release were measured in response to nutrients.; RESULTS: Confocal microscopy showed the presence of GLP-1-like and PC1/3 immunoreactivity in subsets of alpha cells, whereas GLP-1 was not observed in beta cells. The presence of GLP-1 in isolated islets was confirmed by immunoblotting, followed by mass spectrometry. Isolated islets and alpha (but not beta) cell fractions released GLP-1, which was regulated by glucose and arginine. PC1/3 (also known as PCSK1) gene expression was shown in alpha cells. GLP-1 release was significantly higher from type 2 diabetic than from non-diabetic isolated islets.; CONCLUSIONS/INTERPRETATION: We have shown the presence of a functionally competent GLP-1 system in human pancreatic islets, which resides in alpha cells and might be modulated by type 2 diabetes
    • 

    corecore